4,487 research outputs found

    Uncertainty propagation within the UNEDF models

    Get PDF
    The parameters of the nuclear energy density have to be adjusted to experimental data. As a result they carry certain uncertainty which then propagates to calculated values of observables. In the present work we quantify the statistical uncertainties of binding energies, proton quadrupole moments and proton matter radius for three UNEDF Skyrme energy density functionals by taking advantage of the knowledge of the model parameter uncertainties. We find that the uncertainty of UNEDF models increases rapidly when going towards proton or neutron rich nuclei. We also investigate the impact of each model parameter on the total error budget.Peer reviewe

    Combinatorics on words in information security: Unavoidable regularities in the construction of multicollision attacks on iterated hash functions

    Full text link
    Classically in combinatorics on words one studies unavoidable regularities that appear in sufficiently long strings of symbols over a fixed size alphabet. In this paper we take another viewpoint and focus on combinatorial properties of long words in which the number of occurrences of any symbol is restritced by a fixed constant. We then demonstrate the connection of these properties to constructing multicollision attacks on so called generalized iterated hash functions.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model

    Full text link
    Neutrinoless Double Beta Decay (0νββ0\nu\beta\beta) is presently the only known experiment to distinguisch between Dirac neutrinos, different from their antiparticles, and Majorana neutrinos, identical with their antiparticles. In addition 0νββ0\nu\beta\beta allows to determine the absolute scale of the neutrino masses. This is not possible with neutrino oscillations. To determine the neutrino masses one must assume, that the light Majorana neutrino exchange is the leading mechanism for 0νββ0\nu\beta\beta and that the matrix element of this transition can ba calculated reliably. The experimental 0νββ0\nu\beta\beta transition amplitude in this mechanism is a product of the light left handed effective Majorana neutrino mass and of this transition matrix element. The different methods, Quasi-particle Random Phase Approximation (QRPA), Shell Model (SM), Projected Hartree-Fock-Bogoliubov (PHFB) and Interacting Boson Model (IBM2) used in the literature and the reliability of the matrix elements in these approaches are reviewed. In the second part it is investigated how one can determine the leading mechanism or mechanisms from the data of the 0νββ0\nu\beta\beta decay in different nuclei. Explicite expressions are given for the transition matrix elements. is shown, that possible interference terms allow to test CP (Charge and Parity conjugation) violation.Comment: Contribution to the EPS conference in Eilath: "Nuclear Physics in Astrophysics 5." April 3rd to 8th. 201

    Properties of spherical and deformed nuclei using regularized pseudopotentials in nuclear DFT

    Get PDF
    We developed new parameterizations of local regularized finite-range pseudopotentials up to next-to-next-to-next-to-leading order ((NLO)-L-3), used as generators of nuclear density functionals. When supplemented with zero-range spin-orbit and density-dependent terms, they provide a correct single-reference description of binding energies and radii of spherical and deformed nuclei. We compared the obtained results to experimental data and discussed benchmarks against the standard well-established Gogny D1S functional.Peer reviewe

    Towards a Novel Energy Density Functional for Beyond-mean-field Calculations with Pairing and Deformation

    Get PDF
    We take an additional step towards the optimization of the novel finite-range pseudopotential at a constrained Hartree–Fock–Bogolyubov level and implement an optimization procedure within an axial code using harmonic oscillator basis. We perform the optimization using three different numbers of the harmonic oscillator shells. We apply the new parameterizations in the O–Kr part of the nuclear chart and isotopic chain of Sn, and we compare the results with experimental values and those given by a parameterization obtained using a spherical code.Peer reviewe

    Regularized pseudopotential for mean-field calculations

    Get PDF
    We present preliminary results obtained with a finite-range two-body pseudopotential complemented with zero-range spin-orbit and density-dependent terms. After discussing the penalty function used to adjust parameters, we discuss predictions for binding energies of spherical nuclei calculated at the mean-field level, and we compare them with those obtained using the standard Gogny D1S finite-range effective interaction. © Published under licence by IOP Publishing Ltd.Peer reviewe

    Multipole strength function of deformed superfluid nuclei made easy

    Full text link
    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in 240^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.Comment: 5 pages, 3 figure
    • …
    corecore