135 research outputs found

    Superconductivity in Na_xCoO_2yH_2O by charge fluctuation

    Full text link
    A new mechanism for superconductivity in the newly discovered Co-based oxide is proposed by using charge fluctuation. A single-band extended Hubbard model on the triangular lattice is studied within random phase approximation. ff-wave triplet superconductivity is stabilized in the vicinity of charge-density-wave instability, which is in sharp contrast with the square-lattice case. The physical origin of the realization of the ff-wave triplet state as well as the relevance to experiments are discussed

    Superconductivity in CoO2_2 Layers and the Resonating Valence Bond Mean Field Theory of the Triangular Lattice t-J model

    Get PDF
    Motivated by the recent discovery of superconductivity in two dimensional CoO2_2 layers, we present some possibly useful results of the RVB mean field theory applied to the triangular lattice. Away from half filling, the order parameter is found to be complex, and yields a fully gapped quasiparticle spectrum. The sign of the hopping plays a crucial role in the analysis, and we find that superconductivity is as fragile for one sign as it is robust for the other. Nax_xCoO2y_2\cdot yH2_2O is argued to belong to the robust case, by comparing the LDA Fermi surface with an effective tight binding model. The high frequency Hall constant in this system is potentially interesting, since it is pointed out to increase linearly with temperature without saturation for T >> Tdegeneracy_{degeneracy}.Comment: Published in Physical Review B, total 1 tex + 9 eps files. Erratum added as separate tex file on November 7, 2003, a numerical factor corrected in the erratum on Dec 3, 200

    Weak phonon-mediated pairing in BiS2 superconductor from first principles

    Get PDF
    Superconductivity in novel bismuth-sulfur superconductors has attracted large research efforts, both experimental and theoretical, but a consensus on the nature of superconductivity in these materials has yet to be reached. Using density functional theory for superconductors, we study the electron-phonon pairing mechanism in LaO0.5F0.5BiS2. We first confirm the presence of a commensurate charge density wave instability, in accordance with previous studies. Using a recently developed integration scheme for the electron-phonon coupling, we found that its strength is much lower than previously calculated, due to improved density of states calculations. We finally conclude that conventional phonon-mediated pairing cannot explain the high superconducting transition temperatures observed in this material.We acknowledge support from EPSRC, Corpus Christi College, and JST, PRESTO and JSPS KAKENHI grants number JP15H03696, JP16H00924, JP16H06345 and JP15K20940. This work was supported by MEXT Element Strategy Initiative to Form Core Research Center in Japan

    Superconducting states in frustrating t-J model: A model connecting high-TcT_c cuprates, organic conductors and Nax_xCoO2_2

    Full text link
    The two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter region close to the triangular lattice. The frustration enlarges the region of superconductivity when t<0t<0 for the hole-doped case, which is equivalent to t>0t>0 for electron doping. We also discuss the SU(2) degeneracy at half-filling. The d+id state probably corresponds to the spin gap state at half-filling.Comment: 4 pages, 4 figure

    What is Minimal Model of 3He Adsorbed on Graphite? -Importance of Density Fluctuations in 4/7 Registered Solid -

    Full text link
    We show theoretically that the second layer of 3He adsorbed on graphite and solidified at 4/7 of the first-layer density is close to the fluid-solid boundary with substantial density fluctuations on the third layer. The solid shows a translational symmetry breaking as in charge-ordered insulators of electronic systems. We construct a minimal model beyond the multiple-exchange Heisenberg model. An unexpectedly large magnetic field required for the measured saturation of magnetization is well explained by the density fluctuations. The emergence of quantum spin liquid is understood from the same mechanism as in the Hubbard model and in \kappa-(ET)_2Cu_2(CN)_3 near the Mott transitions.Comment: 9 pages, 5 figure

    Variational Monte Carlo Study of Electron Differentiation around Mott Transition

    Full text link
    We study ground-state properties of the two-dimensional Hubbard model at half filling by improving variational Monte Carlo method and by implementing quantum-number projection and multi-variable optimization. The improved variational wave function enables a highly accurate description of the Mott transition and strong fluctuations in metals. We clarify how anomalous metals appear near the first-order Mott transition. The double occupancy stays nearly constant as a function of the on-site Coulomb interaction in the metallic phase near the Mott transition in agreement with the previous unbiased results. This unconventional metal at half filling is stabilized by a formation of ``electron-like pockets'' coexisting with an arc structure, which leads to a prominent differentiation of electrons in momentum space. An abrupt collapse of the ``pocket'' and ``arc'' drives the first-order Mott transition.Comment: 4 pages, 3 figure

    Nodal line resonance generating the giant anomalous Hall effect of Co3_3Sn2_2S2_2

    Get PDF
    Giant anomalous Hall effect (AHE) and magneto-optical activity can emerge in magnets with topologically non-trivial degeneracies. However, identifying the specific band structure features like Weyl points, nodal lines or planes which generate the anomalous response is a challenging issue. Since the low-energy interband transitions can govern the static AHE, we addressed this question in the prototypical magnetic Weyl semimetal Co3_3Sn2_2S2_2 also hosting nodal lines by broadband polarized reflectivity and magneto-optical Kerr effect spectroscopy with a focus on the far-infrared range. In the linear dichroism spectrum we observe a strong resonance at 40\,meV, which also shows up in the optical Hall conductivity spectrum and primarily determines the static AHE, thus, confirms its intrinsic origin. Our material-specific theory reproduces the experimental data remarkably well and shows that strongly tilted nodal line segments around the Fermi energy generate the resonance. While the Weyl points only give vanishing contributions, these segments of the nodal lines gapped by the spin-orbit coupling dominate the low-energy optical response

    Charge order and superconductivity in a two-dimensional triangular lattice at n=2/3

    Full text link
    To investigate the possibility of charge order and superconductivity in a doped two-dimensional triangular lattice, we study the extended Hubbard model with variational Monte Carlo method. At n=2/3, a commensurate filling for a triangular lattice, it is shown that the nearest-neighbor Coulomb interaction V induces honeycomb-type charge order and antiferromagnetic spin order at U>10t. We also discuss the possibility of superconductivity induced by charge fluctuation and the relation to the superconductivity in Na_{0.35}CoO_{2}1.3H_{2}O and theta-type organic condoctors.Comment: 4 pages, 5 figure
    corecore