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Superconductivity in novel bismuth-sulphur superconductors has attracted large research efforts,
both experimental and theoretical, but a consensus on the nature of superconductivity in these
materials has yet to be reached. Using density functional theory for superconductors, we study
the electron-phonon pairing mechanism in LaO0.5F0.5BiS2. We first confirm the presence of a com-
mensurate charge density wave instability, in accordance with previous studies. Using a recently
developed integration scheme for the electron-phonon coupling, we found that its strength is much
lower than previously calculated, due to improved density of state calculations. We finally conclude
that conventional phonon-mediated pairing cannot explain the high superconducting transition tem-
peratures observed in this material.

Introduction — Superconductivity was discovered in
two layered materials sharing the same layer of bismuth
and sulphur atoms [1–3], which has been shown to be
the superconducting layer [4–6]. The material having
reached the highest superconducting transition temper-
ature (Tc) of 10.6 K so far is La(O,F)BiS2 [2]. Its par-
ent compound is insulating and becomes superconducting
upon doping, which raises the Fermi level in a rigid band
fashion [4]. Various variations of this composition have
been attempted, of which the most studied have been the
replacement of lanthanum with a different lanthanide [7–
12].

Interest in this family of superconductors was sparked
by the theoretical prediction of the presence of a charge
density wave instability in La(O,F)BiS2 [13, 14], and
its observation in EuFBiS2 [11]. Moreover, ferromag-
netism was measured in the superconducting phase of
Ce(O,F)BiS2, in agreement with ab-initio calculations
[7, 15]. Finally, quantum critical fluctuations of the mag-
netic moments were measured in CeOBiS2 [16].

La(O,F)BiS2 diplays a large range of superconducting
transition temperatures between 2.5 and 11.5 K [17, 18].
Its change with doping was measured, and gives a dome
structure centred on x = 0.5 [19]. The synthesis method
has been shown to be crucial in changing Tc: the crystals
synthesised using a simple solid state reaction at ambient
pressure (AP) have Tc ∼ 3 K, while the ones having gone
through an extra high pressure annealing stage (HP) have
Tc ∼ 10 K [2]. Interestingly, this change is revertible: HP
samples annealed again at ambient pressure recover the
structure and properties of AP samples [20]. The differ-
ence in crystal structure between AP and HP samples is
hard to characterise, as X-ray peaks of HP samples are
much broader than the ones of AP samples [2, 19]. This
difference has however been linked to strain along the
c-axis [20], and to a change from a larger positive Hall
resistance in AP samples to a smaller negative one in HP
samples [21].

The evolution of La(O,F)BiS2 under pressure has been
measured for both AP and HP samples. Tc in AP samples
exhibit a sharp increase under pressure from around 3 K

to around 9.5 K at 0.7 GPa [22, 23]. In comparison, in
HP samples, Tc rises very slightly with pressure [22, 24].
This change in Tc has been shown to coincide with a
structural phase transition from tetragonal to monoclinic
[23]. However relating this to the crystal structure of the
HP samples is difficult since X-ray and neutron measure-
ments both gave a tetragonal structure for HP samples
[2, 25]

The prediction of a charge density wave instability in
La(O,F)BiS2 [13, 14] led to in-depth studies of its vi-
brational modes using neutron diffraction [25, 26]. No
phonon anomaly in either doping or temperature change
was detected, which suggested that the electron-phonon
coupling could be much weaker than the calculated val-
ues [25]. Furthermore, neutron diffraction data yielded
the presence of local charge fluctuations [26].

Angle-resolved photoemission spectroscopy (ARPES)
was performed on La(O,F)BiS2, Ce(O,F)BiS2 and
Nd(O,F)BiS2 [27–30]. Large discrepancies with elec-
tronic structure calculations were obtained, particu-
larly the absence of the central nested Fermi pocket
[27, 28, 30]. This was attributed to a level of doping
lower than expected [28, 30]. This was confirmed by
measurements on precisely calibrated samples [29]. Fi-
nally, electronic correlations were found to be weak in
these systems [28, 29]

The diversity in the phenomenology of these materi-
als drove theoretical studies to probe the possibility of
unconventional pairing [31]. Spin-fluctuation mediated
pairing has been calculated using the random-phase ap-
proximation, [32–34], numerics [35, 36] and functional
renormalisation group [37].

Ab-initio calculations outputted large electron-phonon
couplings, between 0.8 and 0.85 [13, 14, 38]. Two cal-
culations found unstable phonon modes around (π,π,0)
[13, 14], leading to a commensurate charge density
wave [13, 14]. The phonon dispersion along the c axis
was found to be small, highlighting the small magni-
tude of the interlayer coupling across the buffer layers
[13]. All these studies concluded that superconductiv-
ity in La(O,F)BiS2 is strongly coupled and conventional
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[13, 14, 38]. The same conclusion has been reached in
La(O,F)BiSe2 [39]

In this paper, we study conventional superconductiv-
ity in LaO0.5F0.5BiS2, using density functional theory for
superconductors [40, 41]. We first confirm the arising of
a commensurate charge density wave instability, in ac-
cordance with previous studies [13, 14]. Using a novel
integration scheme for the electron-phonon coupling, we
find that its strength is much lower than previously cal-
culated, due to our improved convergence of density of
state calculations. We finally conclude that conventional
phonon-mediated pairing cannot explain the high Tcs ob-
served in this material.
Methods — Electronic structures, dynamical matrices

and electron-phonon coupling coefficients were calculated
using norm-conserving pseudopotentials and a plane
wave basis set as implemented in quantum espresso
[42]. The plane-wave energy cutoff for the wavefunc-
tions was set to 90 Ry. We also used the all-electron
full-potential linearised augmented plane-wave code Elk
[43]. Electron dielectric functions were calculated within
the frequency-dependent random-phase approximation.

We employed the exchange-correlation potential im-
plemented by Perdew and Zunger based on the local
density approximation [44]. The relativistic effects are
mostly treated at the scalar-relativistic level [45], whereas
the spin-orbit coupling was explicitly included for re-
examining the charge instability (see below).

We used density functional theory for superconduc-
tors to calculate superconducting transition tempera-
tures (Tc) from first principles [40, 41]. It is an ab-
initio theory which allows one to calculate the conven-
tional strong-coupling Tc within the level of the Migdal-
Eliashberg theory [46–48] and without ajustable param-
eters.

It consists in solving self-consistently the gap equation:

∆nk = −Znk∆nk −
1

2

∑
n′k′

Knkn′k′
tanh[(β/2)En′k′ ]

En′k′
∆n′k′

where n and n′ run over bands, k and k′ over crystal mo-
mentum, β is the inverse temperature, ∆nk is the super-
conducting gap function, and Enk =

√
(εnk − µ)2 + ∆2

nk
where εnk is the Kohn-Sham one-particle energy and µ
is the chemical potential for the normal state. In sub-
sequent calculations, µ is approximated to the Fermi
level for the normal state EF , where the temperature de-
pendence is ignored. Z and K are exchange-correlation
kernels. Z represents the mass renormalisation of the
normal-state band structure due to phonon exchange,
while K = Kph + Kel represents electron-phonon and
electron-electron interactions.

This gap equation is derived by using an extended
version of the standard finite-temperature density-
functional procedure [49] consisting in minimising a
grand canonical potential function of three densities: the
density of electrons, of nuclei, and the superconduct-
ing order parameter [40]. Choosing a system of non-

FIG. 1: Model of the two unit cells used in this work: ex-
perimental (solid black line) and relaxed (dotted blue line)
plotted using VESTA [50] (bottom right). Electronic band
structure (top), and phonon dispersion and density of states
(DOS) in the relaxed structure (bottom left).

interacting electrons but interacting nuclei as the Kohn-
Sham system, one obtains the Kohn-Sham equations in
the Bogoliubov-de Gennes form. Neglecting the feedback
effect of the superconducing gap on the normal electronic
states finally gives the gap equation [40].

The kernels of the gap equation, defined by the pre-
vious procedure as functional derivatives of terms of
the grand canonical potential, are derived perturbatively
using many-body theory [40, 51]. We employed the
phononic kernels Kph and Zph averaged over k-point
defined in equation (23) in [41] and equation (40) in
[52], respectively. The phonon and electron-phonon cou-
pling properties were calculated using density functional
perturbation theory [42, 53]. The pairing and mass-
renormalisation effects are thus treated at the level of the
Migdal-Eliashberg theory with varying density of states
[54].

The electronic kernel Kel is calculated using the
frequency-dependent dielectric function [55–57], thus in-
cluding dynamical Coulomb effects [58].

Results — We calculated the phonon dispersion in the
tetragonal unit cell using density functional perturbation
theory on a sampling of the Brillouin zone of 4 × 4 × 2
q-points with quantum espresso. Hereafter we refer to
the phonon wave number by q. The obtained dispersion
features a structural instability which extends all along
the Γ-M line, matching previous studies (see Supplemen-
tal Material).

In order to test the robustness of this instability, both
to other approximations and to the inclusion spin-orbit
coupling, we recalculated this dispersion using an all-
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FIG. 2: Eliashberg functions calculated using the rescaling
scheme (α2Fresc) for a smearing ≈ 0.068 eV, and the tetra-
hedron scheme with two different q-point grids, both shifted
along the all the axes. The latter is α2Ftetra. The correspond-
ing values of λ are 0.44, 0.58 and 0.47.

electron calculation with and without spin-orbit cou-
pling, and a q-grid of 2 × 2 × 1 points. This yielded
two dispersions, which are similar, with a slightly reduced
depth of the imaginary frequencies from −20 meV to −14
meV. This confirms that this instability is robust.

We obtained the fully relaxed structure by using a unit
cell of dimensions

√
2a×

√
2a where a is the unit cell pa-

rameter of the tetragonal structure. We considered a
monoclinic distortion of the unit cell, following experi-
mental observations [2].

We calculated the phonon dispersion in this relaxed
structure (Figure 1). We see that this relaxation effec-
tively removes the imaginary phonons while keeping the
rest of the phonon spectrum (see supplemental materi-
als) [68]. We therefore use this structure to calculate
electron-phonon coupling coefficients.

The effect of electron-phonon coupling on conventional
superconductivity is well represented by the Eliashberg
function [59]:

α2F (ω) =
1

N(EF )

∑
νq

∑
nn′k

|gνqnk+q,n′k|
2δ(εnk+q − EF )

× δ(εn′k − EF )δ(ω − ωνq) (1)

where ω is the frequency, n and n′ run over electronic
bands, ν over phononic bands, k and q over the Brillouin
zone, and g are the electron-phonon coupling coefficients.
Integrating the Eliashberg function over frequency gives
the electron-phonon coupling factor λ:

λ = 2

∫
dω
α2F

ω
(2)

The characteristic phonon frequency ωln is defined by:

ωln = exp

(∫
dωα

2F (ω)
ω ln(ω)∫

dωα
2F (ω)
ω

)
(3)
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FIG. 3: Electronic density of states at the Fermi level with
respect to the smearing width used in the integration, for
various k-grids. The top four curves were obtained using the
smearing integration of the density of states (Ñ(EF )), while
the bottom two lines were obtained using tetrahedron inte-
gration (exact N(EF )).

The effects of the electron-phonon coupling on Tc are well
quantified by the McMillan-Allen-Dynes formula [60, 61]:

Tc =
ωln
1.2

exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
(4)

where µ∗ is an adjustable pseudopotential parameter rep-
resenting the effective electron-electron Coulomb repul-
sion suppressing the pairing instability [62].

In practice, the integration of equation 1 is carried
out by approximating the singular delta function by a
smeared function δ̃ such as the Hermite-Gaussian [63].
However, this treatment can introduce two types of quan-
titative errors. First, the integrated value converged with
respect to the k-point density suffers from a systematic
error due to the width of the smearing function. Sec-
ond, the convergence with respect to the k-point density
tends to be very difficult to achieve, especially when the
smearing width is small.

The magnitude of the error is well quantified by exam-
ining the electronic density of states N(E) =

∑
nk δ(E−

εnk). We define Ñ as the density of states calculated us-
ing this smearing scheme. Here and hereafter, the func-
tions and values with tilde denote the ones calculated
with the smearing scheme. Equation 1 indicates that
α̃2F scales with Ñ(ẼF )2 in the limit where the electron-
phonon coupling coefficients g are independent of n, n′,
k and q [69]. To estimate the impact of the above quan-
titative errors, we examined the dependence of the elec-
tronic density of states at the Fermi energy Ñ(ẼF ) with
respect to the smearing width and k-point grid (Figure
3). We obtained a well-converged value for N(EF ) using
a very dense k-point grid and the tetrahedron integration
method, which we refer to as the “exact” N(EF ) here-

after. We found that Ñ(ẼF ) differs from the exact value
by approximately 20% at the Gaussian width 0.5 eV,
which is within a standard range of the width. Moreover,
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FIG. 4: Electron-phonon coupling strength λ with respect
to the smearing width used when integrating α2F . The
top curve was obtained using the standard smearing method
(α̃2F ) with a k-grid of 12 × 12 × 6 points and a q-grid of
4×4×2 without shift. The bottom curve was obtained using
the rescaling method which mitigates the influence of errors in
evaluating the electronic density of states (α2Fresc). For ref-
erence, the values of λ obtained using the tetrahedron method
and two q-grids of 4 × 4 × 2 points are also plotted.

we found slowly convergent behaviour for widths lower
than 0.1 eV. Notably, the values of Ñ(ẼF ) are systemat-
ically larger than the exact one, indicating that α̃2F can
suffer from systematic overestimation in this material.

In order to mitigate the above-mentioned overestima-
tion we modified the α2F formula in practice, follow-
ing recent technical developments [64], and obtained the
rescaled Eliashberg function [70]:

α2Fresc(ω) ≡
∑

q

∑
nn′k δ(εnk+q − EF )δ(εn′k − EF )∑

q

∑
nn′k δ̃(εnk+q − ẼF )δ̃(εn′k − ẼF )

× ˜α2F (ω) (5)

The numerator is replaced to the exact N(EF )2 since it
corresponds to the dense k and q-points limit. Note that
regardless of the k-point density, this modified formula
gives us the exact value in the limit where the electron-
phonon coupling coefficients g are independent of n, n′, k
and q. This method has been extensively shown to give
very accurate results for conventional superconductors
[64]. With this formula, as shown in figure 4, we obtained
values of λ almost independent of the smearing width.

We confirmed these results by calculating α2F with
the optimized tetrahedron method [65] (Figure 2). We
used four different q-point meshes, two with 3 × 3 × 3
points (and a 18 × 18 × 6 k-point mesh) and two with
4 × 4 × 2 points (and a 24 × 24 × 4 k-point mesh), one
shifted along the z axis and the other along all the axes
[71] [72]. We name α2Ftetra the Eliashberg function ob-
tained using the all-shifted 4 × 4 × 2 q-point mesh. We
obtained λ = 0.39 and λ = 0.58 for the first sampling,
with z-shifted and all-shifted meshes, respectively, and
λ = 0.48 and λ = 0.47 for the second sampling. The

static dynamical

Tc 0.2 K 0.4 K

µ∗ 0.18 0.16

TABLE I: Superconducting transition temperatures and effec-
tive Coulomb repulsion factors in LaO0.5F0.5BiS2 calculated
using density functional theory for superconductors.

values obtained with 3 × 3 × 3 points differ clearly, in-
dicating a lack of convergence, while the ones obtained
with 4×4×2 points are both very close and between the
two previous ones. This indicates a strong convergence.
Moreover, the values obtained with the 4× 4× 2 q-point
mesh match closely the values obtained by integrating
α2Fresc in the limit of small smearing (Figure 4), which
is the exact limit. The small deviation between the val-
ues of λ indicates that the converged λ is about or below
0.5.

The results obtained for ωln are less conclusive: indeed
the values obtained for the two 3 × 3 × 3 q-point grids
are 116 K and 153 K, while the ones obtained using the
two 4 × 4 × 2 q-point grids are 98 K and 143 K. Let
us note that Tc is affected exponentially by λ whereas
it is affected only linearly by ωln (Equation (3)), which
means that the convergence of λ gives us the order of
magnitude of Tc. In the following subsection, we show
that this order of magnitude is clearly different from the
one observed experimentally.

We calculated the superconducting transition tempera-
ture (Tc) of LaO0.5F0.5BiS2 using density functional the-
ory for superconductors [73]. We ran a “static” calcula-
tion which only uses the zero frequency dielectric func-
tion, and a “dynamical” calculation which uses the full
frequency-dependent dielectric function, both calculated
using a 4× 4× 2 k-point grid. We used α2Ftetra in both
calculations. The results are summarised in table I.

It is interesting to compare this result to the output of
the McMillan-Allen-Dynes formula [60]. We calculated
Tc with this formula using the parameters correspond-
ing to α2Ftetra for a large range of values of µ∗. We
then fitted µ∗ so that this formula gives the same Tc
as the value calculated using density functional theory
for superconductors. We obtain values of µ∗ larger than
in most conventional superconductors [66, 67] (Table I).
This is reminiscent of other ab-initio studies of supercon-
ductors [67].

The value of Tc calculated here are very distant from
all the values of Tc measured in this compound, which are
between 2.5 and 11.5 K [17]. We therefore conclude that
conventional phonon-coupling superconductivity cannot
explain the experimental data on LaO0.5F0.5BiS2.

Conclusion — We calculated phonon frequencies in
the original unit cell of LaO0.5F0.5BiS2, using two differ-
ent approximations and spin-orbit coupling, and found a
structural instability close to the M point of the Brillouin
zone. This confirms previous findings [13, 14].

The electron-phonon coupling was calculated in a re-
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laxed structure using the standard smearing integration
scheme and obtained values for λ with a strong smear-
ing width dependence (Figure 4). These results match
previous calculations well [14].

We then used a cutting-edge rescaling technique [64]
to mitigate the influence of errors in the calculation of
the density of states, which resulted in a much smaller
dependence of λ on smearing width (Figure 4). The ob-
tained λ matches closely results obtained with a novel
tetrahedron method [65]. We conclude that λ < 0.5.

Finally, using the Eliashberg function calculated using
the tetrahedron method, we calculated Tc using density
functional theory for superconductors [40, 41]. We ob-
tained Tc = 0.4 K. This corresponds to a pair-breaking
electron-electron repulsion µ∗ = 0.16, which is larger
than conventional values. We thus conclude that conven-
tional phonon-mediated pairing cannot explain the high
Tcs observed in this material. This is an important step

toward the clarification of the origin of superconductivity
in BiS2 superconductors.
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