30 research outputs found

    Do "Optimal" Conditions Improve Distortion Product Otoacoustic Emission Test Performance?

    No full text
    Objectives: To determine whether an "optimal" distortion product otoacoustic emission (DPOAE) protocol that (1) used optimal stimulus levels and primary-frequency ratios for each f 2 , (2) simultaneously measured 2f 2 Ϫ f 1 and 2f 1 Ϫ f 2 distortion products, (3) controlled source contribution, (4) implemented improved calibration techniques, (5) accounted for the influence of middle ear reflectance, and (6) applied multivariate analyses to DPOAE data results in improved accuracy in differentiating between normal-hearing and hearing-impaired ears, compared with a standard clinical protocol. Design: Data were collected for f 2 frequencies ranging from 0.75 to 8 kHz in 28 normal-hearing and 78 hearing-impaired subjects. The protocol included a control condition incorporating standard stimulus levels and primary-frequency ratios calibrated with a standard SPL method and three experimental conditions using optimized stimuli calibrated with an alternative forward pressure level method. The experimental conditions differed with respect to the level of the reflection-source suppressor tone and included conditions referred to as the null suppressor (i.e., no suppressor tone presented), low-level suppressor (i.e., suppressor tone presented at 58 dB SPL), and high-level suppressor (i.e., suppressor tone presented at 68 dB SPL) conditions. The area under receiver operating characteristic (A ROC ) curves and sensitivities for fixed specificities (and vice versa) were estimated to evaluate test performance in each condition. Results: A ROC analyses indicated (1) improved test performance in all conditions using multivariate analyses, (2) improved performance in the null suppressor and low suppressor experimental conditions compared with the control condition, and (3) poorer performance below 4 kHz with the high-level suppressor. As expected from A ROC , sensitivities for fixed specificities and specificities for fixed sensitivities were highest for the null suppressor and low suppressor conditions and lowest for standard clinical procedures. The influence of 2f 2 Ϫ f 1 and reflectance on test performance were negligible. Conclusions: Predictions of auditory status based on DPOAE measurements in clinical protocols may be improved by the inclusion of (1) optimized stimuli, (2) alternative calibration techniques, (3) low-level suppressors, and (4) multivariate analyses

    Distribution of standing-wave errors in real-ear sound-level measurements

    No full text
    Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burkeet al., 2010) and threshold prediction (Rogerset al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burkeet al. and Rogerset al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies

    Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability

    No full text
    Standing waves can cause errors during in-the-ear calibration of sound pressure level (SPL), affecting both stimulus magnitude and distortion-product otoacoustic emission (DPOAE) level. Sound intensity level (SIL) and forward pressure level (FPL) are two measurements theoretically unaffected by standing waves. SPL, SIL, and FPL in situ calibrations were compared by determining sensitivity of DPOAE level to probe-insertion depth (deep and “shallow”) for a range of stimulus frequencies (1–8 kHz) and levels (20–60 dB). Probe-insertion depth was manipulated with the intent to shift the frequencies with standing-wave minima at the emission probe, introducing variability during SPL calibration. The absolute difference in DPOAE level between insertions was evaluated after correcting for an incidental change caused by the effect of ear-canal impedance on the emission traveling from the cochlea. A three-way analysis of variance found significant main effects for stimulus level, stimulus frequency, and calibration method, as well as significant interactions involving calibration method. All calibration methods exhibited changes in DPOAE level due to the insertion depth, especially above 4 kHz. However, SPL demonstrated the greatest changes across all stimulus levels for frequencies above 2 kHz, suggesting that SIL and FPL provide more consistent measurements of DPOAEs for frequencies susceptible to standing-wave calibration errors
    corecore