1,558 research outputs found
Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms
We propose and analyze a new scheme to produce ultracold neutral plasmas deep
in the strongly coupled regime. The method exploits the interaction blockade
between cold atoms excited to high-lying Rydberg states and therefore does not
require substantial extensions of current ultracold plasma experiments.
Extensive simulations reveal a universal behavior of the resulting Coulomb
coupling parameter, providing a direct connection between the physics of
strongly correlated Rydberg gases and ultracold plasmas. The approach is shown
to reduce currently accessible temperatures by more than an order of magnitude,
which opens up a new regime for ultracold plasma research and cold ion-beam
applications with readily available experimental techniques.Comment: 5 pages, 5 figure
Ultracold Neutral Plasmas
Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near
the ionization threshold, have electron temperatures in the 1-1000 kelvin range
and ion temperatures from tens of millikelvin to a few kelvin. They represent a
new frontier in the study of neutral plasmas, which traditionally deals with
much hotter systems, but they also blur the boundaries of plasma, atomic,
condensed matter, and low temperature physics. Modelling these plasmas
challenges computational techniques and theories of non-equilibrium systems, so
the field has attracted great interest from the theoretical and computational
physics communities. By varying laser intensities and wavelengths it is
possible to accurately set the initial plasma density and energy, and
charged-particle-detection and optical diagnostics allow precise measurements
for comparison with theoretical predictions. Recent experiments using optical
probes demonstrated that ions in the plasma equilibrate in a strongly coupled
fluid phase. Strongly coupled plasmas, in which the electrical interaction
energy between charged particles exceeds the average kinetic energy, reverse
the traditional energy hierarchy underlying basic plasma concepts such as Debye
screening and hydrodynamics. Equilibration in this regime is of particular
interest because it involves the establishment of spatial correlations between
particles, and it connects to the physics of the interiors of gas-giant planets
and inertial confinement fusion devices.Comment: 89 pages, 54 image
Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas
We present techniques to perturb, measure and model the ion velocity
distribution in an ultracold neutral plasma produced by photoionization of
strontium atoms. By optical pumping with circularly polarized light we promote
ions with certain velocities to a different spin ground state, and probe the
resulting perturbed velocity distribution through laser-induced fluorescence
spectroscopy. We discuss various approaches to extract the velocity
distribution from our measured spectra, and assess their quality through
comparisons with molecular dynamic simulationsComment: 13 pages, 8 figure
Velocity Relaxation in a Strongly Coupled Plasma
Collisional relaxation of Coulomb systems is studied in the strongly coupled
regime. We use an optical pump-probe approach to manipulate and monitor the
dynamics of ions in an ultracold neutral plasma, which allows direct
measurement of relaxation rates in a regime where common Landau-Spitzer theory
breaks down. Numerical simulations confirm the experimental results and display
non-Markovian dynamics at early times.Comment: 5 pages, 5 figure
Emergence of Kinetic Behavior in Streaming Ultracold Neutral Plasmas
We create streaming ultracold neutral plasmas by tailoring the photoionizing
laser beam that creates the plasma. By varying the electron temperature, we
control the relative velocity of the streaming populations, and, in conjunction
with variation of the plasma density, this controls the ion collisionality of
the colliding streams. Laser-induced fluorescence is used to map the spatially
resolved density and velocity distribution function for the ions. We identify
the lack of local thermal equilibrium and distinct populations of
interpenetrating, counter-streaming ions as signatures of kinetic behavior.
Experimental data is compared with results from a one-dimensional, two-fluid
numerical simulation.Comment: 8 pages, 6 figure
Demonstrating Universal Scaling in Quench Dynamics of a Yukawa One-Component Plasma
The Yukawa one-component plasma (OCP) is a paradigm model for describing
plasmas that contain one component of interest and one or more other components
that can be treated as a neutralizing, screening background. In appropriately
scaled units, interactions are characterized entirely by a screening parameter,
. As a result, systems of similar show the same dynamics,
regardless of the underlying parameters (e.g., density and temperature). We
demonstrate this behavior using ultracold neutral plasmas (UNP) created by
photoionizing a cold ( mK) gas. The ions in UNP systems are well
described by the Yukawa model, with the electrons providing the screening.
Creation of the plasma through photoionization can be thought of as a rapid
quench from to a final value set by the electron
density and temperature. We demonstrate experimentally that the post-quench
dynamics are universal in over a factor of 30 in density and an order
of magnitude in temperature. Results are compared with molecular dynamics
simulations. We also demonstrate that features of the post-quench kinetic
energy evolution, such as disorder-induced heating and kinetic-energy
oscillations, can be used to determine the plasma density and the electron
temperature.Comment: 10 pages, 12 figures, to be submitted to Physical Review
Ultracold Neutral Plasmas
Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near
the ionization threshold. Through the application of atomic physics techniques
and diagnostics, these experiments stretch the boundaries of traditional
neutral plasma physics. The electron temperature in these plasmas ranges from
1-1000 K and the ion temperature is around 1 K. The density can approach
cm. Fundamental interest stems from the possibility of
creating strongly-coupled plasmas, but recombination, collective modes, and
thermalization in these systems have also been studied. Optical absorption
images of a strontium plasma, using the Sr
transition at 422 nm, depict the density profile of the plasma, and probe
kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum
measures the ion velocity distribution, which gives an accurate measure of the
ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex
The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
- …