3,405 research outputs found

    Equation of state in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach

    Get PDF
    We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the TT-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-NtN_t approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to mπ/mρ0.63m_\pi/m_\rho \simeq 0.63, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large NtN_t.Comment: 14 pages, 12 figures, v2: Table I and Figure 3 are corrected, reference updated. Main discussions and conclusions are unchanged, v3: version to appear in PRD, v4: reference adde

    Towards the QCD equation of state at the physical point using Wilson fermion

    Get PDF
    We study the (2+1)-flavor QCD at nonzero temperatures using nonperturbatively improved Wilson quarks of the physical masses by the fixed scale approach. We perform physical point simulations at finite temperatures with the coupling parameters which were adopted by the PACS-CS Collaboration in their studies using the reweighting technique. Zero temperature values are obtained on the PACS-CS configurations which are open to the public on the ILDG/JLDG. Finite temperature configurations are generated with the RHMC algorithm. The lattice sizes are 323×Nt32^3 \times N_t with Nt=14N_t=14, 13, \cdots, 4 which correspond to T160T \approx 160--550 MeV. We present results of some basic observables at these temperatures and the status of our calculation of the equation of state.Comment: 7 pages, 3 figures, proceedings of the 33rd International Symposium on Lattice Field Theory, July 14-18, 2015, Kobe, Japa

    Quantum Chromodynamics with Many Flavors

    Get PDF
    We investigate the phase structure of lattice QCD for general number of flavors NFN_F. Based on numerical data combined with the results of the perturbation theory we propose the following picture: When NF17N_F \ge 17, there is only one IR fixed point at vanishing gauge coupling, i.e., the theory in the continuum limit is trivial. On the other hand, when 16NF716 \ge N_F \ge 7, there is a non-trivial fixed point. Therefore, the theory is non-trivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for NF6N_F \le 6.Comment: Talk presented by K. Kanaya at the 1997 Yukawa International Seminar (YKIS'97) on ``Non-Perturbative QCD --- Structure of the QCD Vacuum ---'', YITP, Kyoto, Japan, 2--12 Dec. 1997. To be published in the proceedings [Prog. Theor. Phys. Suppl.

    Phase structure of QCD for general number of flavors

    Get PDF
    We investigate and elucidate the phase structure of QCD for general number of flavors NFN_F with Wilson quarks, varying NFN_F from 2 up to 300. Based on numerical results combined with the result of the perturbation theory we propose the following picture: When NF17N_F \ge 17, there is only a trivial fixed point and therefore the theory in the continuum limit is trivial. On the other hand, when 16NF716 \ge N_F \ge 7, there is a non-trivial fixed point and therefore the theory is non-trivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for NF6N_F \le 6. We also discuss the structure of the deconfining phase at finite temperatures for the small number of flavors such as NF=2N_F=2 and 3, through a systematic study of it for general number of flavors.Comment: LaTeX, 7 pages, 10 PS figures, Talk presented at LATTICE96(poster) and LATTICE96(finite temperature

    Application of fixed scale approach to static quark free energies in quenched and 2+1 flavor lattice QCD with improved Wilson quark action

    Full text link
    Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the O(a)O(a)-improved Wilson quark action. We perform simulations at mPS/mV=0.63m_{\rm PS}/m_{\rm V} = 0.63 (0.74) for light (strange) flavors with lattice sizes of 323×Nt32^3 \times N_t with Nt=4N_t=4--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screening properties can be well described by the screened Coulomb form with appropriate Casimir factor at high temperature. We also discuss a limitation of the fixed-scale approach at high temperature.Comment: 16 pages, 14 figure

    Scaling of the critical temperature and quark potential with a renormalization group improved SU(3) gauge action

    Get PDF
    We study the scaling property of the ratio of the critical temperature TcT_c to the square root of the string tension σ\sigma in the SU(3) pure gauge theory using a renormalization group improved action. We first determine the critical coupling βc\beta_c on lattices with temporal extension Nt=4N_t=4 and 6, and then calculate the static quark potential at the critical couplings on lattices at zero temperature. The values of Tc/σT_{c}/\sqrt{\sigma} in the infinite volume limit are identical within errors, while they are slightly larger than the value extrapolated to the continuum limit with the standard action. We also note that the rotational invariance of the static quark potential is remarkably restored in the both cases, and that the potential V(R)V(R) in physical units scales in the whole region of RR investigated.Comment: 3 pages of Latex, 5 PostScript figures, Talk presented at LATTICE96(finite temperature
    corecore