25 research outputs found
Statistical observations of the MLT, latitude and size of pulsed ionospheric flows with the CUTLASS Finland radar
A study has been performed on the occurrence of pulsed ionospheric flows as detected by the CUTLASS Finland HF radar. These flows have been suggested as being created at the ionospheric footprint of newly-reconnected field lines, during episodes of magnetic flux transfer into the terrestrial magnetosphere (flux transfer events or FTEs). Two years of both high-time resolution and normal scan data from the CUTLASS Finland radar have been analysed in order to perform a statistical study of the extent and location of the pulsed ionospheric flows. We note a great similarity between the statistical pattern of the coherent radar observations of pulsed ionospheric flows and the traditional low-altitude satellite identification of the particle signature associated with the cusp/cleft region. However, the coherent scatter radar observations suggest that the merging gap is far wider than that proposed by the Newell and Meng model. The new model for cusp low-altitude particle signatures, proposed by Lockwood and Onsager and Lockwood provides a unified framework to explain the dayside precipitation regimes observed both by the low-altitude satellites and by coherent scatter radar detection
CUTLASS observations of a high-m ULF wave and its consequences for the DOPE HF Doppler sounder
The CUTLASS (Co-operative UK Twin Located Auroral Sounding System) Finland HF radar, whilst operating in a high spatial and temporal resolution mode, has measured the ionospheric signature of a naturally occurring ULF wave in scatter artificially generated by the Tromsù Heater. The wave had a period of 100 s and exhibited curved phase fronts across the heated volume (about 180 km along a single radar beam). Spatial information provided by CUTLASS has enabled an m-number for the wave of about 38 to be determined. This high-m wave was not detected by the IMAGE (International Monitor for Auroral Geomagnetic Efects) network of ground magnetometers, as expected for a wave of a small spatial scale size. These observations over the first independent confirmation of the existence of the ground uncorrelated ULF wave signatures previously reported in measurements recorded from an HF Doppler sounder located in the vicinity of Tromsö. These results both demonstrate a new capability for geophysical exploration from the combined CUTLASS-EISCAT ionospheric Heater experiment, and provide a verification of the HF Doppler technique for the investigation of small scale ULF waves
A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HP radar
Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint
Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)
In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave
A statistical study of the location and motion of the HF radar cusp
The large-scale and continuous monitoring of the ionospheric cusp region offered by HF radars has been exploited in order to examine the statistical location and motion of the equatorward edge of the HF radar cusp as a function of the upstream IMF BZ component. Although a considerable scatter is seen, both parameters have a clear influence from the north-south component of the IMF. Excellent agreement is achieved with previous observations from low altitude spacecraft data. The HF radar cusp region is seen to migrate equatorward at a rate of 0.02° min-1 nT-1 under IMF BZ south conditions, but remains static for IMF BZ north. The motion of the cusp implies an addition of magnetic flux of ~ 2 × 104 Wbs-1 nT-1 under IMF BZ south conditions, equivalent to a reconnection voltage of 20 kV nT-1, which is consistent with previous estimates from case studies on both the dayside and nightside regions
ULF wave occurrence statistics in a high-latitude HF Doppler sounder
Ultra low frequency (ULF) wave activity in the high-latitude ionosphere has been observed by a high frequency (HF) Doppler sounder located at Tromsø, Norway (69.7°N, 19.2°E geographic coordinates). A statistical study of the occurrence of these waves has been undertaken from data collected between 1979 and 1984. The diurnal, seasonal, solar cycle and geomagnetic activity variations in occurrence have been investigated. The findings demonstrate that the ability of the sounder to detect ULF wave signatures maximises at the equinoxes and that there is a peak in occurrence in the morning sector. The occurrence rate is fairly insensitive to changes associated with the solar cycle but increases with the level of geomagnetic activity. As a result, it has been possible to characterise the way in which prevailing ionospheric and magnetospheric conditions affect such observations of ULF waves
The ionospheric response during an interval of Pc5 ULF wave activity
A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode
High-latitude HP Doppler observations of ULF waves. 1. Waves with large spatial scale sizes
A quantitative study of observations of the ionospheric signatures of magnetospheric ultra low frequency (ULF) waves by a high-latitude (geographic: 69.6°N 19.2°E) high-frequency Doppler sounder has been undertaken. The signatures, which are clearly correlated with pulsations in ground magnetometer data, exhibit periods in the range 100–400 s and have azimuthal wave numbers in the range 3–8. They are interpreted here as local field line resonances. Phase information provided by O- and X-mode Doppler data support the view that these are associated with field line resonances having large azimuthal scale sizes. The relative phases and amplitudes of the signatures in the Doppler and ground magnetometer data are compared with a model for the generation of Doppler signatures from incident ULF waves. The outcome suggests that the dominant mechanism involved in producing the Doppler signature is the vertical component of an E × B bulk motion of the local plasma caused by the electric field perturbation of the ULF wave
First observations of SPEAR-induced topside and bottomside sporadic E layer heating observed using the EISCAT Svalbard and SuperDARN radars
[1] We present the first observations of heater-induced simultaneous topside and bottomside sporadic E layer enhancements at very high latitudes (78.15°N) using the Space Plasma Exploration by Active Radar (SPEAR) heating facility and the European Incoherent Scatter (EISCAT) Svalbard Radar. During the experiment the SPEAR heating facility was transmitting with O-mode polarization in a field-aligned direction with a constant effective radiated power of ∼16 MW. Results show distinct heater-induced enhancements in both the ion and plasma line spectra. The plasma line enhancements are observed at the SPEAR heater frequency of 4.45 MHz. The plasma line observations represent the highest spatial resolution data (100 m) obtained of such heater-induced enhancements and indicate simultaneous enhancements at both the topside and bottomside of the layer, respectively (located at ∼107.5 and 109 km altitude, respectively). It is postulated that the results represent evidence of O- to Z-mode conversion of the heater wave occurring at the bottom of the E layer, allowing propagation through the layer resulting in simultaneous topside enhancements. The Z-mode enhancements are observed outside the Spitze angle, which is thought to be a result of field-aligned irregularities causing an increase in angular extent of the observations. Additional data from the Super Dual Auroral Radar Network (SuperDARN) HF Finland radar are also shown, which indicate that upon a thinning of the sporadic E layer, the heater beam propagated into the F region, where it induced artificial field-aligned irregularities
SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory
[1] The Hankasalmi SuperDARN radar in Finland, while operating in a high spatial and temporal resolution mode, has measured the ionospheric signature of a naturally occurring ULF wave in scatter artificially induced by the Tromsø Heater. The wave had a period of 100 s and exhibited curved phase fronts across the heated volume (about 180 km along a single radar beam). Spatial information provided by the radar has enabled an m-number for the wave of about 38 to be determined. It is demonstrated here that the curved phase fronts are a generic feature of nonstationary poloidal waves in a transverse resonator, caused by the common action of the field line curvature, the plasma pressure, and the equilibrium current. Some features of the observed event agree with the resonator in the vicinity of the ring current, where it is proposed that the wave is excited by a moving source in the form of a proton cloud drifting in the magnetosphere in the azimuthal direction