489 research outputs found
Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates
The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are
demonstrated to be thermodynamically stable in ferromagnetic spinor
Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is
established in a plane of the rotation drive vs the total magnetization by
comparing the energies for other competing non-axis-symmetric or singular
vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure
Axisymmetric versus Non-axisymmetric Vortices in Spinor Bose-Einstein Condensates
The structure and stability of various vortices in F=1 spinor Bose-Einstein
condensates are investigated by solving the extended Gross-Pitaevskii equation
under rotation. We perform an extensive search for stable vortices, considering
both axisymmetric and non-axisymmetric vortices and covering a wide range of
ferromagnetic and antiferromagnetic interactions. The topological defect called
Mermin-Ho (Anderson-Toulouse) vortex is shown to be stable for ferromagnetic
case. The phase diagram is established in a plane of external rotation Omega vs
total magnetization M by comparing the free energies of possible vortices. It
is shown that there are qualitative differences between axisymmetric and
non-axisymmetric vortices which are manifested in the Omega- and M-dependences.Comment: 9 pages, 9 figure
Formation of atomic tritium clusters and condensates
We present an extensive study of the static and dynamic properties of systems
of spin-polarized tritium atoms. In particular, we calculate the two-body
|F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via
a Feshbach resonance at a field strength of about 870G. Such a resonance might
be exploited to make and control a Bose-Einstein condensate of tritium in the
|0,0> state. It is further shown that the quartet tritium trimer is the only
bound hydrogen isotope and that its single vibrational bound state is a
Borromean state. The ground state properties of larger spin-polarized tritium
clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure
Magnetism in a lattice of spinor Bose condensates
We study the ground state magnetic properties of ferromagnetic spinor
Bose-Einstein condensates confined in a deep optical lattices. In the Mott
insulator regime, the ``mini-condensates'' at each lattice site behave as
mesoscopic spin magnets that can interact with neighboring sites through both
the static magnetic dipolar interaction and the light-induced dipolar
interaction. We show that such an array of spin magnets can undergo a
ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar
interaction depending on the dimension of the confining optical lattice. The
ground-state spin configurations and related magnetic properties are
investigated in detail
Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases
Finite temperature Green's function technique is used to calculate the
energies and damping rates of elementary excitations of the homogeneous,
dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both
in the density and spin channels. For this purpose the self-consistent
dynamical Hartree-Fock model is formulated, which takes into account the direct
and exchange processes on equal footing by summing up certain classes of
Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to
exhibit the hybridization of one-particle and collective excitations correctly.
The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio
Vortices in multicomponent Bose-Einstein condensates
We review the topic of quantized vortices in multicomponent Bose-Einstein
condensates of dilute atomic gases, with an emphasis on that in two-component
condensates. First, we review the fundamental structure, stability and dynamics
of a single vortex state in a slowly rotating two-component condensates. To
understand recent experimental results, we use the coupled Gross-Pitaevskii
equations and the generalized nonlinear sigma model. An axisymmetric vortex
state, which was observed by the JILA group, can be regarded as a topologically
trivial skyrmion in the pseudospin representation. The internal, coherent
coupling between the two components breaks the axisymmetry of the vortex state,
resulting in a stable vortex molecule (a meron pair). We also mention
unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein
condensate. Next, we discuss a rich variety of vortex states realized in
rapidly rotating two-component Bose-Einstein condensates. We introduce a phase
diagram with axes of rotation frequency and the intercomponent coupling
strength. This phase diagram reveals unconventional vortex states such as a
square lattice, a double-core lattice, vortex stripes and vortex sheets, all of
which are in an experimentally accessible parameter regime. The coherent
coupling leads to an effective attractive interaction between two components,
providing not only a promising candidate to tune the intercomponent interaction
to study the rich vortex phases but also a new regime to explore vortex states
consisting of vortex molecules characterized by anisotropic vorticity. A recent
experiment by the JILA group vindicated the formation of a square vortex
lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International
Journal of Modern Physics
Lipocalin 2 is protective against E. coli pneumonia
<p>Abstract</p> <p>Background</p> <p>Lipocalin 2 is a bacteriostatic protein that binds the siderophore enterobactin, an iron-chelating molecule produced by <it>Escherichia coli </it>(<it>E. coli</it>) that is required for bacterial growth. Infection of the lungs by <it>E. coli </it>is rare despite a frequent exposure to this commensal bacterium. Lipocalin 2 is an effector molecule of the innate immune system and could therefore play a role in hindering growth of <it>E. coli </it>in the lungs.</p> <p>Methods</p> <p>Lipocalin 2 knock-out and wild type mice were infected with two strains of <it>E. coli</it>. The lungs were removed 48 hours post-infection and examined for lipocalin 2 and MMP9 (a myeloid marker protein) by immunohistochemical staining and western blotting. Bacterial numbers were assessed in the lungs of the mice at 2 and 5 days after infection and mortality of the mice was monitored over a five-day period. The effect of administering ferrichrome (an iron source that cannot be bound by lipocalin 2) along with E.coli was also examined.</p> <p>Results</p> <p>Intratracheal installation of <it>E. coli </it>in mice resulted in strong induction of lipocalin 2 expression in bronchial epithelium and alveolar type II pneumocytes. Migration of myeloid cells to the site of infection also contributed to an increased lipocalin 2 level in the lungs. Significant higher bacterial numbers were observed in the lungs of lipocalin 2 knock-out mice on days 2 and 5 after infection with <it>E. coli </it>(p < 0.05). In addition, a higher number of <it>E. coli </it>was found in the spleen of surviving lipocalin 2 knock-out mice on day 5 post-infection than in the corresponding wild-type mice (p < 0.05). The protective effect against <it>E. coli </it>infection in wild type mice could be counteracted by the siderophore ferrichrome, indicating that the protective effect of lipocalin 2 depends on its ability to sequester iron.</p> <p>Conclusions</p> <p>Lipocalin 2 is important for protection of airways against infection by <it>E. coli</it>.</p
Skeletal muscle properties and fatigue resistance in relation to smoking history
Although smoking-related diseases, such as chronic obstructive pulmonary disease (COPD), are often accompanied by increased peripheral muscle fatigability, the extent to which this is a feature of the disease or a direct effect of smoking per se is not known. Skeletal muscle function was investigated in terms of maximal voluntary isometric torque, activation, contractile properties and fatigability, using electrically evoked contractions of the quadriceps muscle of 40 smokers [19 men and 21 women; mean (SD) cigarette pack years: 9.9 (10.7)] and age- and physical activity level matched non-smokers (22 men and 23 women). Maximal strength and isometric contractile speed did not differ significantly between smokers and non-smokers. Muscle fatigue (measured as torque decline during a series of repetitive contractions) was greater in smokers (P = 0.014), but did not correlate with cigarette pack years (r = 0.094, P = 0.615), cigarettes smoked per day (r = 10.092, P = 0.628), respiratory function (%FEV1pred) (r = −0.187, P = 0.416), or physical activity level (r = −0.029, P = 0.877). While muscle mass and contractile properties are similar in smokers and non-smokers, smokers do suffer from greater peripheral muscle fatigue. The observation that the cigarette smoking history did not correlate with fatigability suggests that the effect is either acute and/or reaches a ceiling, rather than being cumulative. An acute and reversible effect of smoking could be caused by carbon monoxide and/or other substances in smoke hampering oxygen delivery and mitochondrial function
- …