113 research outputs found

    Magnetically Tunable Kondo - Aharonov-Bohm Effect in a Triangular Quantum Dot

    Full text link
    The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay between continuous [spin-rotation SU(2)] and discrete (permutation C3v) symmetries, as well as U(1) gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or complete suppression depending on contact setups.Comment: 4 pages, 3 .eps figure

    Kondo Lattice without Nozieres Exhaustion Effect

    Full text link
    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not occur. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.Comment: 4 pages, 3 figure

    Interplay between Heavy Fermions and Crystal Field Excitation in Kondo Lattices. Low-Temperature Thermodynamics and Inelastic Neutron Scattering Spectra of CeNiSn

    Full text link
    The microscopic theory of interaction between the heavy fermions and the crystal field excitations in Kondo lattices is presented. It is shown that the heavy-fermion spectrum scaled by the Kondo temperature TKT_K can be modified by the crystal field excitations with the energy ΔCF\Delta_{CF} provided the inequality ΔCF<TK\Delta_{CF}<T_K is realized. On the base of general description of excitation spectrum the detailed qualitative and quantitative explanation of anisotropic inelastic neutron scattering spectra and low-temperature specific heat of orthorhombic CeNiSn is given. The theory resolves the apparent contradiction between the metallic conductivity and the gap-wise behavior of thermodynamic properties and spin response of CeNiSn at low temperatures.Comment: 24 pages (LaTeX), 12 Postscript figures, submitted to Phys.Rev.

    Electron self-trapping in intermediate-valent SmB6

    Full text link
    SmB6 exhibits intermediate valence in the ground state and unusual behaviour at low temperatures. The resistivity and the Hall effect cannot be explained either by conventional sf-hybridization or by hopping transport in an impurity band. At least three different energy scales determine three temperature regimes of electron transport in this system. We consider the ground state properties, the soft valence fluctuations and the spectrum of band carriers in n-doped SmB6. The behaviour of excess conduction electrons in the presence of soft valence fluctuations and the origin of the three energy scales in the spectrum of elementary excitations is discussed. The carriers which determine the low-temperature transport in this system are self-trapped electron-polaron complexes rather than simply electrons in an impurity band. The mechanism of electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure

    Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_2

    Full text link
    We extend the model of ferromagnetic superexchange in dilute magnetic semiconductors to the ferromagnetically ordered highly insulating compounds (dilute magnetic dielectrics). The intrinsic ferromagnetism without free carriers is observed in oxygen-deficient films of anatase TiO_2 doped with transition metal impurities in cation sublattice. We suppose that ferromagnetic order arises due to superexchange between complexes [oxygen vacancies + magnetic impurities], which are stabilized by charge transfer from vacancies to impurities. The Hund rule controls the superexchange via empty vacancy related levels so that it becomes possible only for the parallel orientation of impurity magnetic moments. The percolation threshold for magnetic ordering is determined by the radius of vacancy levels, but the exchange mechanism does not require free carriers. The crucial role of the non-stoichiometry in formation of the ferromagnetism makes the Curie temperatures extremely sensitive to the methods of sample preparation.Comment: 18 pages, 2 figure

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets 0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, JnsRnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones JisSiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page

    On the validity of the Franck-Condon principle in the optical spectroscopy: optical conductivity of the Fr\"{o}hlich polaron

    Get PDF
    The optical absorption of the Fr\"{o}hlich polaron model is obtained by an approximation-free Diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: i) a strong coupling expansion, based on the the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (α>10\alpha >10); ii) a Memory Function Formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (α<6\alpha <6) taking the dynamic lattice relaxation into account. In the coupling regime 6<α<106<\alpha<10 the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.Comment: accepted for publication in PR

    Resonance Kondo Tunneling through a Double Quantum Dot at Finite Bias

    Full text link
    It is shown that the resonance Kondo tunneling through a double quantum dot (DQD) with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary dc-bias for parallel DQD described by SO(4) symmetry. We analyze the decoherence effects associated with the triplet/singlet relaxation in DQD and discuss the shape of differential conductance line as a function of dc-bias and temperature.Comment: 11 pages, 6 eps figures include
    corecore