98,396 research outputs found
Combustion: Structural interaction in a viscoelastic material
The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code
Density and flux distributions of neutral gases in the lunar atmosphere
Neon, argon, and helium density and flux distributions in lunar atmospher
Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions
Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent
Spin correlations and velocity-scaling in color-octet NRQCD matrix elements
We compute spin-dependent decay matrix elements for S-wave charmonium and
bottomonium in lattice nonrelativistic quantum chromodynamics (NRQCD).
Particular emphasis is placed upon the color-octet matrix elements, since the
corresponding production matrix elements are expected to appear in the dominant
contributions to the production cross sections at large transverse momenta. We
use three slightly different versions of the heavy-quark lattice Green's
functions in order to minimize the contributions that scale as powers of the
ultraviolet cutoff. The lattice matrix elements that we calculate obey the
hierarchy that is suggested by the velocity-scaling rules of NRQCD.Comment: 25 pages, 2 figures, 2 tables, further discussion of effective
  lattice cutoffs and uncertainties, additional minor revisions, version to be
  published in Phys. Rev. 
Impurity scattering and Friedel oscillations in mono-layer black phosphorus
We study the effect of impurity scattering effect in black phosphorurene (BP)
in this work. For single impurity, we calculate impurity induced local density
of states (LDOS) in momentum space numerically based on tight-binding
Hamiltonian. In real space, we calculate LDOS and Friedel oscillation
analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are
investigated using -matrix approximation when the density is low. Midgap
states appear in band gap with peaks in DOS. The peaks of midgap states are
dependent on impurity potential. For finite positive potential, the impurity
tends to bind negative charge carriers and vise versa. The infinite impurity
potential problem is related to chiral symmetry in BP
Crystal orientation and thickness dependence of superconductivity on tetragonal FeSe1-x thin films
Superconductivity was recently found in the simple tetragonal FeSe structure.
Recent studies suggest that FeSe is unconventional, with the symmetry of the
superconducting pairing state still under debate. To tackle these problems,
clean single crystals and thin films are required. Here we report the
fabrication of superconducting beta-phase FeSe1-x thin films on different
substrates using a pulsed laser deposition (PLD) technique. Quite
interestingly, the crystal orientation, and thus, superconductivity in these
thin films is sensitive to the growth temperature. At 320C, films grow
preferably along c-axis, but the onset of superconductivity depends on film
thickness. At 500C, films grow along (101), with little thickness dependence.
These results suggest that the low temperature structural deformation
previously found is crucial to the superconductivity of this material
Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections
A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct
- …
