10,983 research outputs found

    Automatic Classification and Speaker Identification of African Elephant (\u3cem\u3eLoxodonta africana\u3c/em\u3e) Vocalizations

    Get PDF
    A hidden Markov model (HMM) system is presented for automatically classifying African elephant vocalizations. The development of the system is motivated by successful models from human speech analysis and recognition. Classification features include frequency-shifted Mel-frequency cepstral coefficients (MFCCs) and log energy, spectrally motivated features which are commonly used in human speech processing. Experiments, including vocalization type classification and speaker identification, are performed on vocalizations collected from captive elephants in a naturalistic environment. The system classified vocalizations with accuracies of 94.3% and 82.5% for type classification and speaker identification classification experiments, respectively. Classification accuracy, statistical significance tests on the model parameters, and qualitative analysis support the effectiveness and robustness of this approach for vocalization analysis in nonhuman species

    Teaching Physics Using Virtual Reality

    Get PDF
    We present an investigation of game-like simulations for physics teaching. We report on the effectiveness of the interactive simulation "Real Time Relativity" for learning special relativity. We argue that the simulation not only enhances traditional learning, but also enables new types of learning that challenge the traditional curriculum. The lessons drawn from this work are being applied to the development of a simulation for enhancing the learning of quantum mechanics

    Two scenarios for avalanche dynamics in inclined granular layers

    Full text link
    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    A model of adaptive decision making from representation of information environment by quantum fields

    Full text link
    We present the mathematical model of decision making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioral, and geo-political factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are of the purely informational nature. The QFT-model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism (QBism). We demonstrate the quantum-like interference effect in DM which is exhibited as a violation of the formula of total probability and hence the classical Bayesian inference scheme.Comment: in press in Philosophical Transactions

    Calibration of the LIGO displacement actuators via laser frequency modulation

    Full text link
    We present a frequency modulation technique for calibration of the displacement actuators of the LIGO 4-km-long interferometric gravitational-wave detectors. With the interferometer locked in a single-arm configuration, we modulate the frequency of the laser light, creating an effective length variation that we calibrate by measuring the amplitude of the frequency modulation. By simultaneously driving the voice coil actuators that control the length of the arm cavity, we calibrate the voice coil actuation coefficient with an estimated 1-sigma uncertainty of less than one percent. This technique enables a force-free, single-step actuator calibration using a displacement fiducial that is fundamentally different from those employed in other calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit

    Flavor changing interactions mediated by scalars at the weak scale

    Full text link
    The quark and lepton mass matrices possess approximate flavor symmetries. Several results follow if the interactions of new scalars possess these approximate symmetries. Present experimental bounds allow these exotic scalars to have a weak scale mass. The Glashow-Weinberg criterion is rendered unnecessary. Finally, rare leptonic B meson decays provide powerful probes of these scalars, especially if they are leptoquarks.Comment: 13 pages, report LBL-3234

    The Emergence of the Modern Universe: Tracing the Cosmic Web

    Full text link
    This is the report of the Ultraviolet-Optical Working Group (UVOWG) commissioned by NASA to study the scientific rationale for new missions in ultraviolet/optical space astronomy approximately ten years from now, when the Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to 0, occupying over 80% of cosmic time and beginning after the first galaxies, quasars, and stars emerged into their present form. We considered high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field optical imaging (at least 10 arcmin square). The exciting science to be addressed in the post-HST era includes studies of dark matter and baryons, the origin and evolution of the elements, and the major construction phase of galaxies and quasars. Key unanswered questions include: Where is the rest of the unseen universe? What is the interplay of the dark and luminous universe? How did the IGM collapse to form the galaxies and clusters? When were galaxies, clusters, and stellar populations assembled into their current form? What is the history of star formation and chemical evolution? Are massive black holes a natural part of most galaxies? A large-aperture UV/O telescope in space (ST-2010) will provide a major facility in the 21st century for solving these scientific problems. The UVOWG recommends that the first mission be a 4m aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field imaging. In the coming decade, NASA should investigate the feasibility of an 8m telescope, by 2010, with deployable optics similar to NGST. No high-throughput UV/Optical mission will be possible without significant NASA investments in technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full document with postscript figures available at http://casa.colorado.edu/~uvconf/UVOWG.htm

    Mechanistic mathematical model of polarity in yeast

    Get PDF
    The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the “front” of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-actin (and hence directed vesicle traffic) speeds fluorescence recovery of Cdc42p after photobleaching, suggesting that vesicle traffic of Cdc42p contributes to polarization. We present a mathematical modeling framework that combines previously developed mechanistic reaction-diffusion and vesicle-trafficking models. Surprisingly, the combined model recapitulated the observed effect of vesicle traffic on Cdc42p dynamics even when the vesicles did not carry significant amounts of Cdc42p. Vesicle traffic reduced the concentration of Cdc42p at the front, so that fluorescence recovery mediated by Cdc42p flux from the cytoplasm took less time to replenish the bleached pool. Simulations in which Cdc42p was concentrated into vesicles or depleted from vesicles yielded almost identical predictions, because Cdc42p flux from the cytoplasm was dominant. These findings indicate that vesicle-mediated delivery of Cdc42p is not required to explain the observed Cdc42p dynamics, and raise the question of whether such Cdc42p traffic actually contributes to polarity establishment

    The Origin of a Repose Angle: Kinetics of Rearrangements for Granular Materials

    Full text link
    A microstructural theory of dense granular materials is presented, based on two main ideas. Firstly, that macroscopic shear results form activated local rearrangements at a mesoscopic scale. Secondly, that the update frequency of microscopic processes is determined by granular temperature. In a shear cell, the resulting constitutive equations account for Bagnold's scaling and for the existence of a Coulomb criterion of yield. In the case of a granular flow down an inclined plane, they account for the rheology observed in recent experiments and for the temperature and velocity profiles measured numerically.Comment: submitted to PR
    corecore