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Automatic classification and speaker identification of African
elephant (Loxodonta africana) vocalizations

Patrick J. Cleminsa) and Michael T. Johnson
Speech and Signal Processing Laboratory, Marquette University,
P.O. Box 1881, Milwaukee, Wisconsin 53233-1881

Kirsten M. Leongb) and Anne Savage
Disney’s Animal Kingdom, Lake Buena Vista, Florida 32830

~Received 27 February 2004; revised 26 October 2004; accepted 13 November 2004!

A hidden Markov model~HMM! system is presented for automatically classifying African elephant
vocalizations. The development of the system is motivated by successful models from human
speech analysis and recognition. Classification features include frequency-shifted Mel-frequency
cepstral coefficients~MFCCs!and log energy, spectrally motivated features which are commonly
used in human speech processing. Experiments, including vocalization type classification and
speaker identification, are performed on vocalizations collected from captive elephants in a
naturalistic environment. The system classified vocalizations with accuracies of 94.3% and 82.5%
for type classification and speaker identification classification experiments, respectively.
Classification accuracy, statistical significance tests on the model parameters, and qualitative
analysis support the effectiveness and robustness of this approach for vocalization analysis in
nonhuman species. ©2005 Acoustical Society of America.@DOI: 10.1121/1.1847850#

PACS numbers: 43.80.Lb, 43.80.Ka@JAS# Pages: 956–963

I. INTRODUCTION

One major task in bioacoustic research is determining
repertoires for various species and then correlating the dif-
ferent vocalizations with behavior~Berg, 1983; Cleveland
and Snowdon, 1982; Pooleet al., 1988; Sjare and Smith,
1986a, b!. Currently, many features used to determine the
vocalization type are extracted by hand from spectrogram
plots, introducing bias into the feature values. Improved fea-
ture extraction and automatic classification would drastically
decrease the time spent analyzing, classifying, and segment-
ing vocalizations, as well as provide a method for unbiased
feature extraction. In addition, automatic classification sys-
tems can sometimes identify acoustic patterns correlating to
the psychological or physiological state of an animal that are
not obvious from simple spectrogram measures.

In the field of bioacoustics, traditionally, animal vocal-
ization analysis is done using statistical methods such as
multivariate analysis of variance~MANOVA!, discriminant
function analysis, or principal components analysis~PCA!
~Fristrup and Watkins, 1992; Leonget al., 2002; Owren
et al., 1997; Riede and Zuberbu¨hler, 2003; Sjare and Smith,
1986a!. By incorporating these traditional methods with a
classification system such as that presented here, it is pos-
sible to go beyond traditional hypothesis testing and build
systems that will classify unknown vocalizations, find new
types of vocalizations, and measure how the vocalizations
vary within and across classes. One key benefit of this ap-
proach is that automatic classification methods can model
and compensate for temporal variation of vocalization pat-

terns, making better use of timing information than tradi-
tional whole-spectrogram measures.

Previous studies in automatic classification of animal
vocalizations include substantial work in feature identifica-
tion as well as a number of papers on complete classification
systems. Fristrup and Watkins~1992!have created an analy-
sis package, Acoustat, capable of automatically extracting 26
different features including median center frequency, band-
width, and duration. Spectrograms are used to extract the
majority of the features. Chesmore~2001!has implemented a
complete automatic classification system that uses time-
domain-based features and an artificial neural network
~ANN! to classify the vocalizations of various species of
insects. Also using an ANN-based classifier, Campbellet al.
~2002! were able to identify individual sea lions by their
calls with 71% accuracy using spectral value inputs. Other
studies have compared various classification systems’ ability
to detect biological oceanic signals. These classification sys-
tems include ANNs, hidden Markov models~HMMs!, and
linear spectrogram correlator filters~Potteret al., 1994; Mel-
linger and Clark, 1993!. Finally, Anderson~1999!compared
a HMM-based classification system against a dynamic time
warping ~DTW!-based system using a dataset consisting of
two different species of bird song. His conclusion was that
while the DTW system worked better with a small amount of
training data, the HMM system was more robust to noise and
more variable vocalizations.

Since the tasks of speaker identification and vocalization
classification, common in bioacoustic analysis, correspond
directly to common human speech processing tasks, existing
speech processing algorithms can be adapted for application
to animal vocalizations. Speech processing methods are at-
tractive because of the large research effort that has been
devoted to this field over the past 50 years, and because
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current speech systems include robust feature extraction
techniques coupled with optimal statistical classification
models. Justification for the application of speech processing
techniques to bioacoustics is supported by studies that sug-
gest that most mammalian vocal production and reception
systems are extremely similar~Bradbury and Vehrencamp,
1998; Titze, 1994!. Therefore, it is reasonable to envision
that the structure of human speech algorithms could be
adapted to most mammalian species. Current state-of-the-art
human speech systems can achieve classification accuracies
of 92% for speech recognition systems on dictated speech
~Padmanabhan and Picheny, 2002! and 85% for speaker
identification on conversational telephone speech~Reynolds,
2002!, although these accuracies can vary widely due to
background noise characteristics or the number of speakers
enrolled in the system.

While these systems show promise for use in the field of
animal bioacoustics, there are challenges with animal vocal-
izations that include noise and label validity. Noise due to
poor recording environments can greatly decrease classifica-
tion accuracy, especially if the characteristics of the noise
vary across the dataset or within individual recordings. Label
validity relates to the accuracy and consistency of expert
vocalization annotations. When identifying individual ani-
mals, it can sometimes be difficult to tell which member of a
group is vocalizing even with visual inspection, and when
annotating behavior or intended meaning, the animals’ be-
havioral cues are often ambiguous.

African elephants~Loxodonta africana!have been ex-
tensively studied by researchers for several decades. There is

a wealth of information on social dynamics, reproductive
strategies, and modalities of communication that provides us
with a detailed understanding of the behavioral ecology of
this species in the wild. The vocalizations of the African
elephant have been categorized using various schemes~Berg,
1983; Leonget al., 2002; Pooleet al., 1988!. Based on the
assessment of spectrograms coupled with behavioral analy-
sis, these studies have found that there are about ten different
basic vocalization classes, including the rumble, rev, croak,
snort, and trumpet. Many of these classes likely include sub-
types. Example spectrograms of a few of these vocalization
classes are shown in Fig. 1. The rumble, with much of its
energy concentrated in the infrasound range as low as 12 Hz,
is the most common vocalization~Leong et al., 2002!. The
rumble is used to communicate between groups and within
each family group. Playback studies have shown that the
lower frequency characteristics of the rumble allow it to be
used to communicate over long distances~Pooleet al., 1988;
Langbaueret al., 1991!, and this function is often empha-
sized in discussions of this type of vocalization. Less com-
mon than the rumble are the rev, usually emitted when the
elephant is startled and often followed by a rumble, and the
croak, usually occurring in groups of two or three and com-
monly associated with the elephant sucking either water or
air into the trunk~Leong et al., 2002!. Other vocalization
classes include the snort, a higher frequency vocalization
most generally used as a low-excitement greeting or request
for contact, and the trumpet, produced when the elephant is
excited~Berg, 1983; Leonget al., 2002; Pooleet al., 1988!.
In addition, there are a few vocalization types that have been

FIG. 1. Spectrograms of various types of elephant vocalizations.~a! Croak.~b! Rev from 1 to 1.5 s, then rumble.~c! Trumpet.~d! Snort.
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observed, but are not used in the present study, including the
cry, growl, roar, and bark~Berg, 1983!.

This study documents a system, modeled after human
speech recognition algorithms, for automatic feature extrac-
tion and classification of elephant vocalizations by type and
speaker. This system is effective and robust in classifying
elephant vocalizations and has implications as a technique to
improve and broaden analysis of bioacoustic data.

II. DATA

A. Subjects

The subjects for this study are one male~18 years of
age! and six adult nulliparous female~age range 19–30
years!African elephants housed at Disney’s Animal King-
dom™, Lake Buena Vista, FL. These elephants are part of a
long-term study of elephant communication that incorporates
behavioral, hormonal, and vocal data to provide a detailed
investigation on the behavioral and reproductive strategies of
African elephants. Detailed information on the results of
these studies can be found in Leonget al. ~2002, 2003!.

B. Data collection

For a detailed description of the methods used to record
elephant vocalizations, see Leonget al. ~2002, 2003!. In
brief, each elephant was fitted with a custom-designed collar
that contained a microphone and a RF transmitter. Collars
were designed, built, and packaged by Walt Disney World
Co. Instrumentation Support Division of Ride and Show En-
gineering. Each collar transmitted to a separate channel of a
TASCAM DA-38 8-channel DAT recorder~TEAC America
Inc., Montebello, CA!and recorded on separated tracks of a
SONY DARS-60MP Digital Audio Tape. The vocalizations
were manually extracted from the DAT, passed through an
antialiasing filter, and stored on a computer at a sampling
rate of 7518 Hz.

The vocalizations are extracted off the DAT tapes using
Real-Time Spectrogram~RTS! software~version 2.0!by En-
gineering Design, Belmont, MA. All vocalizations visually
or acoustically identified were saved as individual files. For
these experiments, a number of the clearer vocalizations
were selected at random using signal-to-noise ratio and the
lack of interference for the duration of the vocalization as the
main criteria.

III. METHODS

A. Feature extraction

Features were extracted from the vocalizations using a
moving Hamming window in a similar manner as in Clemins
and Johnson~2003!. Window sizes of 30 ms are typical for
human speech, based on tradeoffs between frequency resolu-
tion and signal stationarity. Since African elephant vocaliza-
tions have a fundamental frequency range of 7 to 200 Hz
~Langbauer, 2000!, much lower than human speech, the win-
dow size was increased to 60 ms for the call classification
experiment. A window size of 300 ms was used for the
speaker identification experiment because only rumbles, the
lowest frequency vocalizations, were used in this experi-

ment. In all experiments, the frame rate was one-third the
window size, so that consecutive windows overlap by two-
thirds. This overlapping allowed improved temporal resolu-
tion for time alignment while still maintaining sufficient fre-
quency resolution for spectral analysis.

Twelve Mel-frequency cepstral coefficients~MFCCs!
plus log-energy were extracted from each moving window.
Cepstral coefficients~Davis and Mermelstein, 1980! are ex-
tremely common spectral features in human speech process-
ing and have a number of beneficial characteristics. These
include the ability to capture vocal tract resonances but ex-
clude excitation patterns, the usage of Euclidian distance be-
tween sets of coefficients which directly relates to log-
spectral distances, and the tendency for coefficients to be
largely uncorrelated which makes them well suited for sta-
tistical pattern recognition models. The signal processing ba-
sis for the cepstral representation is based on the source-filter
model of human speech, which also has been used recently
to describe the vocal production systems of many different
animal species~Fitch, 2003!. As shown in the block diagram
of Fig. 2, MFCCs were derived by first computing the fast
Fourier transform~FFT! of each window. Following this, the
frequency axis was warped to the Mel-scale by multiplying
the spectrum with a series of Mel-spaced triangular filters.
The use of a Mel-spaced frequency scale is supported by
evidence that elephants, like humans, perceive frequencies
on a logarithmic scale~Heffner and Heffner, 1982; Be´késy,
1960!. The energy from the frequency band filters was then
used as input to a discrete cosine transform, whose output
provides cepstral coefficients.

The Mel-frequency filter bank was adjusted to the range
10 to 2000 Hz for the call classification experiment and 10 to
150 Hz for the speaker identification experiment in order to
focus on the part of the spectrum used by elephants in the

FIG. 2. Feature extraction process. A window of the vocalization waveform
is manipulated to generate a number~12 in this set of experiments! of
Mel-frequency cepstral coefficients.
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types of calls tested~Langbauer, 2000!. A plot of the Mel-
frequency filter bank is shown in Fig. 3. Since the signal was
recorded at 7518 Hz and the desired filter bank range was
only 10 to 150 Hz, the signal was zero padded to four times
its original length before calculating the FFT in order to
smooth the frequency spectrum.

B. Model parameters

A hidden Markov model~HMM! was used to model
each of the different speakers or vocalization types. A HMM
is a statistical state machine model, where states represent
stationary spectral configurations and transitions between
states represent spectral transition~Rabiner and Jaung,
1986!. A diagram of a HMM is in Fig. 4. When modeling
time series, the states of the HMM are linearly connected
with state transitions from left to right, essentially represent-
ing time. A HMM is described by its transitions, the prob-
abilities of transitioning from one state to the next, and its
state distributions, the probabilities of a particular feature
observation occurring while in that state. Each state’s obser-
vation probability was represented by a multivariate Gauss-
ian distribution. The task of a HMM is essentially to map a
sequence of observations, here the sequence of MFCC fea-
tures throughout a vocalization, onto a sequence of states,
and determine the likelihood that the observations could
have been generated by that model. To implement a classifi-

cation task, multiple HMMs are trained, one for each class,
and observation examples are classified according to the
model yielding the highest likelihood.

HMMs are used in nearly all state-of-the-art speech rec-
ognition systems. They were a good choice for this task since
they can model both the temporal and spectral differences
between similar vocalizations. HMMs have the ability to per-
form nonlinear temporal alignment during the recognition
and training process for vocalizations that may be similar but
have different durations. Another reason for using HMMs is
that because of their statistical basis, other statistical infor-
mation, such as grammar models, can be easily incorporated.
The programming toolkit used here for model implementa-
tion is HTK 3.1.1 from Cambridge University~2002!. HTK
provides a robust set of tools to implement HMM models,
including the Baum-Welch Expectation Maximization algo-
rithm ~Baumet al., 1970; Moon, 1996! for training and the
Viterbi algorithm ~Forney, 1973!for classifying new vocal-
izations. For these experiments, we used a three-state left-to-
right HMM. A silence model was also trained and included
before and after each vocalization model to account for vary-
ing amounts of leading and trailing silence regions.

IV. RESULTS

A. Vocalization type classification

The vocalization type classification experiment is analo-
gous to an isolated-word speech recognition experiment.
Five different African elephant vocalization types were clas-
sified in this experiment, using a total of 74 calls from six
different animals. The goal of this experiment was to com-
pare how well the HMM system outlined above performs on
a classification task that can be easily done by human ex-
perts. Using the methodology outlined in the previous sec-
tion, one HMM was trained for each vocalization type. To
maximize training set size given the limited number of ex-
amples, leave-one-out cross validation was used for testing,
so that each example was tested using models trained on all
examples other than itself. The distribution of the data across
speakers and vocalization types is shown in Fig. 5.

The confusion matrix for this experiment is shown in
Fig. 6. The overall classification accuracy is 79.7%. As can
be seen, rumbles were classified most accurately at 90.9%
while croaks are classified with the least accuracy at 70.6%.

FIG. 4. A hidden Markov model~HMM!. Each state of the HMM corresponds to the spectral characteristics of the animal vocalization as they vary in time.
These characteristics are modeled by a multivariate Gaussian in each state.

FIG. 3. Mel-frequency filterbanks. This plot shows 26 filter banks spaced
between 10 and 2000 Hz using Mel-frequency spacing.
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One possible hypothesis for this is that rumbles are the long-
est vocalization type and therefore have more data windows
on which to base a classification decision. Conversely, the
snort is one of the shortest vocalizations and, thus, has less
data with which to make a decision. It should also be noted
that the rumbles are mainly from one speaker while the
snorts are more evenly distributed across the speakers. This
could also account for the discrepancy in classification accu-
racy between these two vocalization types.

This experiment was also run taking out vocalizations
with poor quantization or poor signal to noise characteristics.
All vocalizations were amplitude scaled to normalize their
power; however, for this portion of the experiment, those
vocalizations with a scale factor larger than 1100 were not
included because of the poor quantization of the signal over
the full range of possible values. A metric related to the
signal to noise ratio, which we call the signal-to-noise char-
acteristic~SNC!, was calculated for each vocalization using
the following formula:

SNC5
FrameEnergymax

FrameEnergyave
. ~1!

Those vocalizations with a SNC of less than 5.0 were not
used in this portion of the experiment. The distribution of the
clean vocalizations across speakers and vocalization type is
shown in Fig. 5. Notice that croaks are more evenly distrib-
uted in the clean dataset as compared to the entire dataset.
The classification matrix of the vocalization type classifica-
tion experiment with poor quality vocalizations removed is
shown in Fig. 6. Note that the classification accuracy of the
system improved from 79.7% to 94.3% when only the 35
highest quality vocalizations are used.

In order to visualize the differences captured in each
trained HMM, a 15-state HMM was trained for each class
using 26 filter bank energies as features. Using these filter
bank energies and the 15 temporal states, a spectrogram can
be plotted which represents the ‘‘maximum likelihood spec-
trogram’’ for that vocalization. The maximum likelihood
spectrogram for each of the vocalizations is shown in Fig. 7.
The blockiness of the plots is a result of relatively low data
resolution~15 states horizontally versus 26 filterbanks verti-
cally!. The larger low-frequency content of the rumble is
evident from the spectrograms as well as the noisy nature of
the croak whose spectrogram shows very little structure. The
short duration of the snort and rev are also captured in these
spectrograms.

While accuracy results demonstrate the ability of the
learned models to generalize with respect to unseen test data,
they do not provide a statistical measure of the difference
between the classes. To test the statistical significance of
these differences, a multivariate analysis of variance
~MANOVA! test was performed on the 12 MFCC coeffi-
cients and log energy measure extracted from each frame of
the vocalizations. The HMM state of each 13-parameter data
vector was determined by a forced Viterbi alignment using
trained HMM models for each vocalization class. In order to
show that each state of the trained HMMs is statistically
different, both the state and vocalization class were used as
independent variables. The result of the MANOVA test using
Wilk’s L statistic was that the five HMMs represent statisti-

FIG. 6. Confusion matrices for vocalization type experiments. Left: Confusion matrix over all vocalizations in dataset. Accuracy: 59/74579.73%. Right:
Confusion matrix over clean vocalizations in dataset. Accuracy: 33/35594.29%.

FIG. 5. Distribution of the vocalizations by type and speaker for the vocal-
ization type experiments. The first number in each cell is the number of calls
in the complete dataset. The second number in each cell is the number of
calls in the clean dataset.
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cally different vocalizations (F104,94835150.8,P,0.001). A
second MANOVA analysis was performed disregarding the
state information and, therefore, with only one independent
variable, vocalization class. This is equivalent to assuming
that each class can be represented by a single state HMM.
Using Wilk’s L statistic, each single-state HMM represents
statistically different vocalizations (F52,94835342.5,P
,0.001).

B. Speaker identification

Speaker identification was performed on data collected
in two separate social contexts. The first social context is
where the single male was separate from the six females. The
second social context is with the male and four of the fe-
males grouped together. All vocalizations in the speaker
identification data set are rumbles, making it similar to a
text-dependent task for human speech. This experiment was
proposed to test the hypothesis that, like humans, each el-
ephant has slightly different vocal characteristics that are
consistent for certain vocalization types.

The classification matrix for this experiment is shown in
Fig. 8. Again, leave-one-out cross validation was used to
obtain the confusion matrices. The classification accuracy
over the six different elephants was 82.5%. Some individuals
were easier to distinguish than others, with accuracies rang-
ing from a low of 75% to a high of 95%, implying that the
degree of similarity between the elephants varies somewhat.

This theory is supported by the plot of the maximum
likelihood spectrograms for each elephant in Fig. 9. Thandi
and Fiki share similar characteristics such as a rather weak

fundamental frequency contour and the upper harmonic en-
ergy peak coming at the peak of the fundamental frequency
contour. The spectrograms for Robin and Bala are also simi-
lar. Both spectrograms show a medium strength fundamental
frequency contour and the peak in upper harmonic strength
comes after the peak of the fundamental frequency contour.

When the vocalizations are separated by social context,
recognition accuracies are comparable: 86.9% for vocaliza-
tions made while the male was separate from the females and
79.6% for vocalizations made while the male and four fe-
males were together. The similar accuracy numbers across
social contexts would support a theory that the elephants do

FIG. 7. Maximum likelihood spectrograms for vocalization type experi-
ments. The plots show 26 filterbank energies on the vertical axis across 15
states of a trained HMM on the horizontal axis and graphically represent the
HMM for each type of vocalization. From top to bottom: croak, rumble, rev,
snort, trumpet.

FIG. 8. Confusion matrix for speaker identification experiment. Accuracy:
118/143582.52%.

FIG. 9. Maximum likelihood spectrograms for speaker identification experi-
ment. The plots show 26 filterbank energies on the vertical axis across 15
states of a trained HMM on the horizontal axis and graphically represent the
HMM for each speaker. From top to bottom: Bala, Fiki, Mackie, Moyo,
Robin, Thandi.
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not vary their vocalizations significantly while in different
social contexts and that the elephants do not use different
vocalizations for varying audiences.

The MANOVA test using Wilk’sL statistic over state
and vocalization class showed that each model state repre-
sents statistically different vocalizations (F130,13396

566.28,P,0.001). A MANOVA test using Wilk’sL statis-
tic without state information also showed that the HMMs
represent statistically different vocalizations (F65,13396

5115.7,P,0.001).
Our hypothesis is supported by the performance of the

classifier as well as by the MANOVA test showing that the
models that represent each elephant are different with a high
level of statistical significance. In addition, playback experi-
ments demonstrated that elephants can distinguish vocaliza-
tions of familiar and nonfamiliar individuals and predicted
that the elephants would have to be familiar with the voices
of at least 100 adult females to make the observed discrimi-
nations~McCombet al., 2000!. One reason for the difference
between animals could be the vocal tract structure. Although
they are functionally identical, individual differences such as
length of the vocal tract and shape of the nasal cavity affect
the elephant’s vocalizations in a consistent way. Another rea-
son for the difference could be a factor that resembles human
dialects or accents. Dialects have been found in various spe-
cies~Dayton, 1990; Santivo, 2000!, and, given that the origin
of the elephants in this study is varied, the individuals could
have developed accents that are present in a certain geo-
graphic region or among a specific family group.

V. CONCLUSIONS

This paper has explored the application of speech pro-
cessing techniques to African elephant vocalizations. Using
typical speech processing features and models, African el-
ephant vocalization types were classified with an accuracy of
79.7% ~94.3% when poorly quantized and poor SNR ex-
amples are removed!and speaker identification resulted in an
accuracy of 88.1%. MANOVA tests on both experiments
showed that the trained models for each class represent sig-
nificantly different vocalizations.

There are a number of factors that affect the classifica-
tion accuracies. The primary factor is the quality of the vo-
calizations, as is clearly seen in the call-type experiments
where removing poor examples reduced error by 73% rela-
tive to including all vocalizations. In many bioacoustic stud-
ies, the vocalizations are categorized by human experts into
groups of varying quality. Then, only the top few categories
are used in the analysis. In this study, the lowest quality
vocalizations were discarded by experts and a fully auto-
mated evaluation mechanism was used to further filter out all
but the highest-quality vocalizations.

Another factor that could reduce classification accura-
cies is the use of suboptimal features to quantify the vocal-
izations. The features used in these experiments are common
to speech processing and are based on human speech produc-
tion and perception mechanisms. Researchers studying ani-
mal communication typically use different features than re-
searchers studying human speech to analyze vocalizations.
Features derived from spectrograms such as fundamental fre-

quency and bandwidth are typically combined with time-
domain features such as duration to generate a complete fea-
ture set. These features are also generally calculated over the
entire vocalization instead of on a frame-by-frame basis. The
incorporation of more long-term features and more detailed
harmonic information is likely to improve the accuracy of
the classifier, leading to a continued need to develop auto-
mated feature extraction methods for such measures.

Additionally, the validity of the data labels affects clas-
sification accuracy. It is well known that elephants use the
same general class of vocalization to express different things
~Berg, 1983; Pooleet al., 1988!, as do many other species.
For example, rumbles are used to maintain contact with other
elephants and to signal that it is time for the herd to move. In
addition, numerous other subtypes of rumbles based on be-
havior have been described~Poole, 2003!. Although it is pos-
sible that one vocalization is used for all purposes, the varia-
tions in spectrogram features indicate that it is likely that the
elephants use specific features of the rumbles as well as con-
textual and visual information sources to discern these dif-
ferent meanings. Thus, labeling rumbles by behavioral con-
text may reveal acoustically distinct subtypes of rumbles,
independent of caller identity. The challenge with this ap-
proach is determining which behavioral context to assign to
which vocalization, as one vocalization often occurs in con-
junction with a variety of behavioral events.

These experiments, particularly the call type classifica-
tion experiment, show that this classification system is robust
to noisy conditions. In the call type classification experiment,
the system’s robustness to noise was shown through a rea-
sonable degradation of classification accuracy when noisy
vocalizations were included in the dataset. If the system was
not noise robust, the classification accuracy would have
dropped off much more significantly when the nosier vocal-
izations were included in the dataset. The ability to achieve
classification accuracies near 80% in both experiments using
relatively noisy vocalizations also shows the robustness of
the system. It is important to know that the noise-resilient
features along with the statistical-based HMM both contrib-
ute to this robustness.

The methods presented here are applicable to a wide
variety of species. Each animal has different vocal character-
istics that make their vocalizations challenging to analyze;
however, many of these different characteristics are similar
in nature. Each species’ sensitivity to different ranges of the
frequency spectrum can be modeled by adjusting the filter-
banks used to derive the MFCCs. Differences in structural
complexity of the vocalizations can be modeled by varying
the HMM topology or adding language models to represent
these characteristics.

Speech systems provide an adaptable standard frame-
work for many bioacoustic tasks and applications. Applying
these systems in bioacoustics research allows us to effec-
tively analyze animal vocalizations and has the potential to
reveal more complex vocalization schemes than previously
imagined such as complex interactions between harmonics
and grammatical structure between syllables with the addi-
tion of a statistical language model. Continuing work in this
area includes incorporation of additional features related to
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fundamental frequency and harmonic measures, integrating
features at multiple temporal scales, and developing general
perceptual-based features that can be easily adapted for dif-
ferent species.
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