17 research outputs found

    Quantitative electron phase imaging with high sensitivity and an unlimited field of view

    Get PDF
    As it passes through a sample, an electron beam scatters, producing an exit wavefront rich in information. A range of material properties, from electric and magnetic field strengths to specimen thickness, strain maps and mean inner potentials, can be extrapolated from its phase and mapped at the nanoscale. Unfortunately, the phase signal is not straightforward to obtain. It is most commonly measured using off-axis electron holography, but this is experimentally challenging, places constraints on the sample and has a limited field of view. Here we report an alternative method that avoids these limitations and is easily implemented on an unmodified transmission electron microscope (TEM) operating in the familiar selected area diffraction mode. We use ptychography, an imaging technique popular amongst the X-ray microscopy community; recent advances in reconstruction algorithms now reveal its potential as a tool for highly sensitive, quantitative electron phase imaging

    Holographic imaging with a hard x-ray nanoprobe : Ptychographic versus conventional phase retrieval

    No full text
    We have performed near-field x-ray imaging with simultaneous object and probe reconstruction. By an advanced ptychographic algorithm based on longitudinal and lateral translations, full-field images of nanoscale objects are reconstructed with quantitative contrast values, along with the extended wavefronts used to illuminate the objects. The imaging scheme makes idealizing assumptions on the probe obsolete, and efficiently disentangles phase shifts related to the object from the imperfections in the illumination. We validate this approach by comparison to the conventional reconstruction scheme without simultaneous probe retrieval, based on the contrast transfer function algorithm. To this end, a set of semiconductor nanowires with controlled chemical composition (InP core, insulating SiO2 layer, and indium tin oxide cover) is imaged using the quasi-point source illumination realized by the hard x-ray nanofocus (26 nm x 39 nm spot size) of the ID16A Nano-Imaging beamline at the European Synchrotron Radiation Facility

    Referenzmodell für das Informationsmanagement in Universitätsklinika

    No full text
    corecore