2,869 research outputs found

    Free energy of hydrophobic hydration:A molecular dynamics study of noble gases in water

    Get PDF
    The potential utility and limitations of two methods to determine free energy differences from molecular dynamics simulations (MD) are studied. The computation of the free energy of hydration of the inert gases serves as a simple but illustrative example. Good results are obtained for the inert gases from a perturbation treatment, using a reference ensemble obtained from a MD simulation of a cavity in water, if these atoms are comparable in size to the cavity and the calculated free energy differences are small. This limits the applicability of the perturbation treatment of a small number of cases. Larger free energy differences can be obtained with reasonable accuracy from MD simulations with continuously changing interaction parameters. This integration method is more generally applicable, but makes an additional simulation necessary

    Nanowire-based very-high-frequency electromechanical resonator

    Get PDF
    Fabrication and readout of devices with progressively smaller size, ultimately down to the molecular scale, is critical for the development of very-high-frequency nanoelectromechanical systems (NEMS). Nanomaterials, such as carbon nanotubes or nanowires, offer immense prospects as active elements for these applications. We report the fabrication and measurement of a platinum nanowire resonator, 43 nm in diameter and 1.3 µm in length. This device, among the smallest NEMS reported, has a fundamental vibration frequency of 105.3 MHz, with a quality factor of 8500 at 4 K. Its resonant motion is transduced by a technique that is well suited to ultrasmall mechanical structures

    Keeping Your Eyes Continuously on the Ball While Running for Catchable and Uncatchable Fly Balls

    Get PDF
    When faced with a fly ball approaching along the sagittal plane, fielders need information for the control of their running to the interception location. This information could be available in the initial part of the ball trajectory, such that the interception location can be predicted from its initial conditions. Alternatively, such predictive information is not available, and running to the interception location involves continuous visual guidance. The latter type of control would predict that fielders keep looking at the approaching ball for most of its flight, whereas the former type of control would fit with looking at the ball during the early part of the ball's flight; keeping the eyes on the ball during the remainder of its trajectory would not be necessary when the interception location can be inferred from the first part of the ball trajectory. The present contribution studied visual tracking of approaching fly balls. Participants were equipped with a mobile eye tracker. They were confronted with tennis balls approaching from about 20 m, and projected in such a way that some balls were catchable and others were not. In all situations, participants almost exclusively tracked the ball with their gaze until just before the catch or until they indicated that a ball was uncatchable. This continuous tracking of the ball, even when running close to their maximum speeds, suggests that participants employed continuous visual control rather than running to an interception location known from looking at the early part of the ball flight.</p

    Inclusion of Safety-Related Issues in Economic Evaluations for Seasonal Influenza Vaccines:A Systematic Review

    Get PDF
    (1) Background: Vaccines for seasonal influenza are a good preventive and cost-effective strategy. However, it is unknown if and how these economic evaluations include the adverse events following immunization (AEFI), and what the impact of such inclusion is on the health economic outcomes. (2) Methods: We searched the literature, up to January 2020, to identify economic evaluations of seasonal influenza vaccines that considered AEFIs. The review protocol was published in PROSPERO (CDR42017058523). (3) Results: A total of 52 economic evaluations considered AEFI-related parameters in their analyses, reflecting 16% of the economic evaluations on seasonal influenza vaccines in the initial study selection. Most studies used the societal perspective (64%) and evaluated vaccination of children (37%). Where considered, studies included direct medical costs of AEFIs (90%), indirect costs (27%), and disutilities/quality-adjusted life years loss due to AEFIs (37%). The majority of these studies accounted for the effects of the costs of AEFI on cost-effectiveness for Guillain–Barré syndrome. In those papers allowing cost share estimation, direct medical cost of AFEIs was less than 2% of total direct costs. (4) Conclusions: Although the overall impact of AEFIs on the cost-effectiveness outcomes was found to be low, we urge their inclusion in economic evaluations of seasonal influenza vaccines to reflect comprehensive reports for the decision makers and end-users of the vaccination strategies

    Electron-hole symmetry in a semiconducting carbon nanotube quantum dot

    Full text link
    Optical and electronic phenomena in solids arise from the behaviour of electrons and holes (unoccupied states in a filled electron sea). Electron-hole symmetry can often be invoked as a simplifying description, which states that electrons with energy above the Fermi sea behave the same as holes below the Fermi energy. In semiconductors, however, electron-hole symmetry is generally absent since the energy band structure of the conduction band differs from the valence band. Here we report on measurements of the discrete, quantized-energy spectrum of electrons and holes in a semiconducting carbon nanotube. Through a gate, an individual nanotube is filled controllably with a precise number of either electrons or holes, starting from one. The discrete excitation spectrum for a nanotube with N holes is strikingly similar to the corresponding spectrum for N electrons. This observation of near perfect electron-hole symmetry demonstrates for the first time that a semiconducting nanotube can be free of charged impurities, even in the limit of few-electrons or holes. We furthermore find an anomalously small Zeeman spin splitting and an excitation spectrum indicating strong electron-electron interactions.Comment: 12 pages, 4 figure

    Interference effects in electronic transport through metallic single-wall carbon nanotubes

    Full text link
    In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed experimentally, that metallic nanotubes, strongly coupled to external electrodes, may act as coherent molecular waveguides for electronic transport. The experimental results were supported by theoretical analysis based on the scattering matrix approach. In this paper we analyze theoretically this problem using a real-space approach, which makes it possible to control quality of interface contacts. Electronic structure of the nanotube is taken into account within the tight-binding model. External electrodes and the central part (sample) are assumed to be made of carbon nanotubes, while the contacts between electrodes and the sample are modeled by appropriate on-site (diagonal) and hopping (off-diagonal) parameters. Conductance is calculated by the Green function technique combined with the Landauer formalism. In the plots displaying conductance {\it vs.} bias and gate voltages, we have found typical diamond structure patterns, similar to those observed experimentally. In certain cases, however, we have found new features in the patterns, like a double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.

    When a fly ball is out of reach: catchability judgments are not based on optical acceleration cancelation.

    Get PDF
    The optical acceleration cancelation (OAC) strategy, based on Chapman’s (1968) analysis of the outfielder problem, has been the dominant account for the control of running to intercept fly balls approaching head on. According to the OAC strategy, outfielders will arrive at the interception location just in time to catch the ball when they keep optical acceleration zero. However, the affordance aspect of this task, that is, whether or not an approaching fly ball is catchable, is not part of this account. The present contribution examines whether the scope of the OAC strategy can be extended to also include the affordance aspect of running to catch a fly ball. This is done by considering a fielder’s action boundaries (i.e., maximum running velocity and – acceleration) in the context of the OAC strategy. From this, only when running velocity is maximal and optical acceleration is non-zero, a fielder would use OAC to perceive a fly ball as uncatchable. The present contribution puts this hypothesis to the test. Participants were required to try to intercept fly balls projected along their sagittal plane. Some fly balls were catchable whereas others were not. Participants were required to catch as many fly balls as possible and to call ‘no’ when they perceived a fly ball to be uncatchable. Participants’ running velocity and –acceleration at the moment of calling ‘no’ were examined. Results showed that participants’ running velocity was submaximal before or while calling ‘no’. Also running acceleration was often submaximal. These results cannot be explained by the use of OAC in judging catchability and ultimately call for a new strategy of locomotor control in running to catch a fly ball

    Indigenous Populations of Three Closely Related Lysobacter spp. in Agricultural Soils Using Real-Time PCR

    Get PDF
    Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer–probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0–5.87 and 6.22–6.95 log gene copy numbers g−1 soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil
    • …
    corecore