18 research outputs found

    Pupillary Stroop effects

    Get PDF
    We recorded the pupil diameters of participants performing the words’ color-naming Stroop task (i.e., naming the color of a word that names a color). Non-color words were used as baseline to firmly establish the effects of semantic relatedness induced by color word distractors. We replicated the classic Stroop effects of color congruency and color incongruency with pupillary diameter recordings: relative to non-color words, pupil diameters increased for color distractors that differed from color responses, while they reduced for color distractors that were identical to color responses. Analyses of the time courses of pupil responses revealed further differences between color-congruent and color-incongruent distractors, with the latter inducing a steep increase of pupil size and the former a relatively lower increase. Consistent with previous findings that have demonstrated that pupil size increases as task demands rise, the present results indicate that pupillometry is a robust measure of Stroop interference, and it represents a valuable addition to the cognitive scientist’s toolbox

    Nicotinic Receptor Gene CHRNA4 Interacts with Processing Load in Attention

    Get PDF
    Background: Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. Methodology/Principal Findings: In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in a4b2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39–77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. Conclusion: The results support the hypothesis that the cholinergic system modulates attentional effort, and that commo
    corecore