6,778 research outputs found

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Many-body approach to the nonlinear interaction of charged particles with an interacting free electron gas

    Get PDF
    We report various many-body theoretical approaches to the nonlinear decay rate and energy loss of charged particles moving in an interacting free electron gas. These include perturbative formulations of the scattering matrix, the self-energy, and the induced electron density. Explicit expressions for these quantities are obtained, with inclusion of exchange and correlation effects.Comment: 11 pages, 5 figures. To appear in Journal of Physics

    Quantum Lifshitz point in the infinite dimensional Hubbard model

    Full text link
    We show that the Gutzwiller variational wave function is surprisingly accurate for the computation of magnetic phase boundaries in the infinite dimensional Hubbard model. This allows us to substantially extend known phase diagrams. For both the half-hypercubic and the hypercubic lattice a large part of the phase diagram is occupied by an incommensurate phase, intermediate between the ferromagnetic and the paramagnetic phase. In case of the hypercubic lattice the three phases join at a new quantum Lifshitz point at which the order parameter is critical and the stiffness vanishes.Comment: 4 pages, 3 figure

    Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy

    Full text link
    We introduce a new aproximation scheme for the periodic Anderson model (PAM). The modified alloy approximation represents an optimum alloy approximation for the strong coupling limit, which can be solved within the CPA-formalism. Zero-temperature and finite-temperature phase diagrams are presented for the PAM in the intermediate-valence regime. The diversity of magnetic properties accessible by variation of the system parameters can be studied by means of quasiparticle densities of states: The conduction band couples either ferro- or antiferromagneticaly to the f-levels. A finite hybridization is a necessary precondition for ferromagnetism. However, too strong hybridization generally suppresses ferromagnetism, but can for certain system parameters also lead to a semi-metallic state with unusual magnetic properties. By comparing with the spectral density approximation, the influence of quasiparticle damping can be examined.Comment: 20 pages, 13 figure

    Dalliance: interactive genome viewing on the web

    Get PDF
    Summary: Dalliance is a new genome viewer which offers a high level of interactivity while running within a web browser. All data is fetched using the established distributed annotation system (DAS) protocol, making it easy to customize the browser and add extra data

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    Magnon-Paramagnon Effective Theory of Itinerant Ferromagnets

    Full text link
    The present work is devoted to the derivation of an effective magnon-paramagnon theory starting from a microscopic lattice model of ferromagnetic metals. For some values of the microscopic parameters it reproduces the Heisenberg theory of localized spins. For small magnetization the effective model describes the physics of weak ferromagnets in accordance with the experimental results. It is written in a way which keeps O(3) symmetry manifest,and describes both the order and disordered phases of the system. Analytical expression for the Curie temperature,which takes the magnon fluctuations into account exactly, is obtained. For weak ferromagnets TcT_c is well below the Stoner's critical temperature and the critical temperature obtained within Moriya's theory.Comment: 14 pages, changed content,new result

    Superconductivity in the quasi-two-dimensional Hubbard model

    Full text link
    On the basis of spin and pairing fluctuation-exchange approximation, we study the superconductivity in quasi-two-dimensional Hubbard model. The integral equations for the Green's function are self-consistently solved by numerical calculation. Solutions for the order parameter, London penetration depth, density of states, and transition temperature are obtained. Some of the results are compared with the experiments for the cuprate high-temperature superconductors. Numerical techniques are presented in details. With these techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure

    Magnetic Properties of the t-J Model in the Dynamical Mean-Field Theory

    Full text link
    We present a theory for the spin correlation function of the t-J model in the framework of the dynamical mean-field theory. Using this mapping between the lattice and a local model we are able to obtain an intuitive expression for the non-local spin susceptibility, with the corresponding local correlation function as input. The latter is calculated by means of local Goldstone diagrams following closely the procedures developed and successfully applied for the (single impurity) Anderson model.We present a systematic study of the magnetic susceptibility and compare our results with those of a Hubbard model at large U. Similarities and differences are pointed out and the magnetic phase diagram of the t-J model is discussed.Comment: 28 pages LaTeX, postscript figures as compressed and uuencoded file included fil
    • …
    corecore