151 research outputs found

    Inception and propagation of positive streamers in high-purity nitrogen: effects of the voltage rise-rate

    Get PDF
    Controlling streamer morphology is important for numerous applications. Up to now, the effect of the voltage rise rate was only studied across a wide range. Here we show that even slight variations in the voltage rise can have significant effects. We have studied positive streamer discharges in a 16 cm point-plane gap in high-purity nitrogen 6.0, created by 25 kV pulses with a duration of 130 ns. The voltage rise varies by a rise rate from 1.9 kV/ns to 2.7 kV/ns and by the first peak voltage of 22 to 28 kV. A structural link is found between smaller discharges with a larger inception cloud caused by a faster rising voltage. This relation is explained by the greater stability of the inception cloud due to a faster voltage rise, causing a delay in the destabilisation. Time-resolved measurements show that the inception cloud propagates slower than an earlier destabilised, more filamentary discharge. This explains that the discharge with a faster rising voltage pulse ends up to be shorter. Furthermore, the effect of remaining background ionisation in a pulse sequence has been studied, showing that channel thickness and branching rate are locally affected, depending on the covered volume of the previous discharge.Comment: 16 pages, 9 figure

    The protein puzzle : the consumption and production of meat, dairy and fish in the European Union

    Get PDF
    In het rapport 'The protein puzzle. The consumption and production of meat, dairy and fish in the European Union' brengen onderzoekers van het Planbureau voor de Leefomgeving (PBL) in kaart wat de gevolgen van de productie en consumptie van dierlijke eiwitten zijn voor milieu, natuur en gezondheid. Vervolgens schetst het PBL welke opties er in Europees verband zijn om de negatieve effecten te verminderen. Met deze studie verschaft het PBL relevante feiten en cijfers ten behoeve van het debat over eiwitconsumptie, inclusief een indicatie van de onzekerheden daarbij

    Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    Get PDF
    Photo-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diameter is smaller, and they branch more frequently. Additionally, they move more in a zigzag fashion and sometimes exhibit a feathery structure. In our simulations, we test the relative importance of photo-ionization and of the background ionization from pulsed repetitive discharges, in air as well as in nitrogen with 1 ppm O2 . We also test reasonable parameter changes of the photo-ionization model. We find that photo- ionization dominates streamer propagation in air for repetition frequencies of at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition frequency has to be included above 1 Hz. Finally, we explain the feather-like structures around streamer channels that are observed in experiments in nitrogen with high purity, but not in air.Comment: 12 figure

    A comparison of 3D particle, fluid and hybrid simulations for negative streamers

    Full text link
    In the high field region at the head of a discharge streamer, the electron energy distribution develops a long tail. In negative streamers, these electrons can run away and contribute to energetic processes such as terrestrial gamma-ray and electron flashes. Moreover, electron density fluctuations can accelerate streamer branching. To track energies and locations of single electrons in relevant regions, we have developed a 3D hybrid model that couples a particle model in the region of high fields and low electron densities with a fluid model in the rest of the domain. Here we validate our 3D hybrid model on a 3D (super-)particle model for negative streamers in overvolted gaps, and we show that it almost reaches the computational efficiency of a 3D fluid model. We also show that the extended fluid model approximates the particle and the hybrid model well until stochastic fluctuations become important, while the classical fluid model underestimates velocities and ionization densities. We compare density fluctuations and the onset of branching between the models, and we compare the front velocities with an analytical approximation

    Probing background ionization: Positive streamers with varying pulse repetition rate and with a radioactive admixture

    Get PDF
    Positive streamers need a source of free electrons ahead of them to propagate. A streamer can supply these electrons by itself through photo-ionization, or the electrons can be present due to external background ionization. Here we investigate the effects of background ionization on streamer propagation and morphology by changing the gas composition and the repetition rate of the voltage pulses, and by adding a small amount of radioactive Krypton 85. We find that the general morphology of a positive streamer discharge in high purity nitrogen depends on background ionization: at lower background ionization levels the streamers branch more and have a more feather-like appearance. This is observed both when varying the repetition rate and when adding Krypton 85, though side branches are longer with the radioactive admixture. But velocities and minimal diameters of streamers are virtually independent of the background ionization level. In air, the inception cloud breaks up into streamers at a smaller radius when the repetition rate and therefore the background ionization level is higher. When measuring the effects of the pulse repetition rate and of the radioactive admixture on the discharge morphology, we found that our estimates of background ionization levels are consistent with these observations; this gives confidence in the estimates. Streamer channels generally do not follow the paths of previous discharge channels for repetition rates of up to 10 Hz. We estimate the effect of recombination and diffusion of ions and free electrons from the previous discharge and conclude that the old trail has largely disappeared at the moment of the next voltage pulse; therefore the next streamers indeed cannot follow the old trail.Comment: 30 pages, 13 figure

    Probing photo-ionization: Experiments on positive streamers in pure gasses and mixtures

    Get PDF
    Positive streamers are thought to propagate by photo-ionization whose parameters depend on the nitrogen:oxygen ratio. Therefore we study streamers in nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen, as well as in pure oxygen and argon. Our new experimental set-up guarantees contamination of the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to measure as they emit considerably less light in the sensitivity range of our fast ICCD camera than the other gasses. Streamers in pure nitrogen and in all nitrogen/oxygen mixtures look generally similar, but become somewhat thinner and branch more with decreasing oxygen content. In pure nitrogen the streamers can branch so much that they resemble feathers. This feature is even more pronounced in pure argon, with approximately 10^2 hair tips/cm^3 in the feathers at 200 mbar; this density could be interpreted as the free electron density creating avalanches towards the streamer stem. It is remarkable that the streamer velocity is essentially the same for similar voltage and pressure in all nitrogen/oxygen mixtures as well as in pure nitrogen, while the oxygen concentration and therefore the photo-ionization lengths vary by more than five orders of magnitude. Streamers in argon have essentially the same velocity as well. The physical similarity of streamers at different pressures is confirmed in all gases; the minimal diameters are smaller than in earlier measurements.Comment: 28 pages, 14 figures. Major differences with v1: - appendix and spectra removed - subsection regarding effects of repetition frequency added - many more smaller change

    Prognosis and institutionalization of frail community-dwelling older patients following a proximal femoral fracture:a multicenter retrospective cohort study

    Get PDF
    SUMMARY: Hip fractures are a serious public health issue with major consequences, especially for frail community dwellers. This study found a poor prognosis at 6 months post-trauma with regard to life expectancy and rehabilitation to pre-fracture independency levels. It should be realized that recovery to pre-trauma functioning is not a certainty for frail community-dwelling patients. INTRODUCTION: Proximal femoral fractures are a serious public health issue in the older patient. Although a significant rise in frail community-dwelling elderly is expected because of progressive aging, a clear overview of the outcomes in these patients sustaining a proximal femoral fracture is lacking. This study assessed the prognosis of frail community-dwelling patients who sustained a proximal femoral fracture. METHODS: A multicenter retrospective cohort study was performed on frail community-dwelling patients with a proximal femoral fracture who aged over 70 years. Patients were considered frail if they were classified as American Society of Anesthesiologists score ≥ 4 and/or a BMI < 18.5 kg/m(2) and/or Functional Ambulation Category ≤ 2 pre-trauma. The primary outcome was 6-month mortality. Secondary outcomes were adverse events, health care consumption, rate of institutionalization, and functional recovery. RESULTS: A total of 140 out of 2045 patients matched the inclusion criteria with a median age of 85 (P(25)–P(75) 80–89) years. The 6-month mortality was 58 out of 140 patients (41%). A total of 102 (73%) patients experienced adverse events. At 6 months post-trauma, 29 out of 120 (24%) were readmitted to the hospital. Out of the 82 surviving patients after 6 months, 41 (50%) were unable the return to their home, and only 32 (39%) were able to achieve outdoor ambulation. CONCLUSION: Frail community-dwelling older patients with a proximal femoral fracture have a high risk of death, adverse events, and institutionalization and often do not reobtain their pre-trauma level of independence. Foremost, the results can be used for realistic expectation management

    The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering

    Get PDF
    The input power of a CO2 microwave plasma is modulated at kHz rate in scans of duty cycle at constant average power to investigate gas heating dynamics and its relation to dissociation efficiency. Rotational temperature profiles obtained from rotational Raman scattering reveal peak temperatures of up to 3000 K, while the edge temperature remains cold (500 K). During the plasma \u27OFF\u27-period, the gas cools down convectively, but remains overall too hot to allow for strong overpopulation of vibrational modes (2200 K in the core). Fast optical imaging monitors plasma volume variations and shows that power density scales with peak power. As dissociation scales with observed peak rotational temperature, it is concluded that thermal processes dominate. A simple 0D model is constructed which explains how higher power density favors dissociation over radial energy transport. Thermal decomposition is reviewed in relation to quenching oxygen radicals with vibrationally excited CO2, to reflect on earlier reported record efficiencies of 90%.</p
    • …
    corecore