3,122 research outputs found

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy.

    Get PDF
    IgE and not IgG is usually associated with allergy. IgE lodged on mast cells in skin or gut and basophils in the blood allows for the prolonged duration of allergy through the persistent expression of high affinity IgE receptors. However, many allergic reactions are not dependent on IgE and are generated in the absence of allergen specific and even total IgE. Instead, IgG plasma cells are involved in induction of, and for much of the pathogenesis of, allergic diseases. The pattern of IgG producing plasma cells in atopic children and the tendency for direct or further class switching to IgE are the principle factors responsible for long-lasting sensitization of mast cells in allergic children. Indirect class switching from IgG producing plasma cells has been shown to be the predominant pathway for production of IgE while a Th2 microenvironment, genetic predisposition, and the concentration and nature of allergens together act on IgG plasma cells in the atopic tendency to undergo further immunoglobulin gene recombination. The seminal involvement of IgG in allergy is further indicated by the principal role of IgG4 in the natural resolution of allergy and as the favourable immunological response to immunotherapy. This paper will look at allergy through the role of different antibodies than IgE and give current knowledge of the nature and role of IgG antibodies in the start, maintenance and resolution of allergy

    Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright: © 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi

    Synthesis and Immunological Characterization of Toll-Like Receptor 7 Agonistic Conjugates

    Get PDF
    Activation of toll-like receptors (TLRs) on cells of the innate immune system initiates, amplifies, and directs the antigen-specific acquired immune response. Ligands that stimulate TLRs, therefore, represent potential immune adjuvants. In this study, a potent TLR7 agonist was conjugated to phospholipids, poly(ethylene glycol) (PEG), or phospholipid-PEG via a versatile benzoic acid functional group. Compared to the unmodified TLR7 agonist, each conjugate displayed a distinctive immunological profile in vitro and in vivo. In mouse macrophages and human peripheral blood mononuclear cells, the phospholipid TLR7 agonist conjugate was at least 100-fold more potent than the free TLR7 ligands, while the potency of PEG−phospholipid conjugate was similar to that of the unmodified TLR7 agonist. When administered systemically in mice, the phospholipid and phospholipid−PEG TLR7 conjugates induced prolonged increases in the levels of proinflammatory cytokines in serum, compared to the unmodified TLR7 activator. When the conjugates were used as adjuvants during vaccination, only the phospholipid TLR7 agonist conjugates induced both Th1 and Th2 antigen-specific immune responses. These data show that the immunostimulatory activity of a TLR7 ligand can be amplified and focused by conjugation, thus broadening the potential therapeutic application of these agents

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    Effects of temperature and doxorubicin exposure on keratinocyte damage in vitro

    Get PDF
    Cancer chemotherapy treatment often leads to hair loss, which may be prevented by cooling the scalp during drug administration. The current hypothesis for the hair preservative effect of scalp cooling is that cooling of the scalp skin reduces blood flow (perfusion) and chemical reaction rates. Reduced perfusion leads to less drugs available for uptake, whereas the reduced temperature decreases uptake of and damage by chemotherapy. Altogether, less damage is exerted to the hair cells, and the hair is preserved. However, the two mechanisms in the hypothesis have not been quantified yet. To quantify the effect of reduced drug damage caused by falling temperatures, we investigated the effect of local drug concentration and local tissue temperature on hair cell damage using in vitro experiments on keratinocytes. Cells were exposed for 4 h to a wide range of doxorubicin concentrations. During exposure, cells were kept at different temperatures. Cell viability was determined after 3 d using a viability test. Control samples were used to establish a concentration–viability curve. Results show that cell survival is significantly higher in cooled cells (T < 22° C) than in non-cooled cells (T = 37° C), but no significant differences are visible between T = 10° C and T = 22° C. Based on this result and previous work, we can conclude that there is an optimal temperature in scalp cooling. Further cooling will only result in unnecessary discomfort for the patient and should therefore be avoided

    Sinteza i biološko djelovanje novih 1-benzil i 1-benzoil 3-heterocikličkih derivata indola

    Get PDF
    Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a,b), imidazolidine-2,4-dione (5a,b), pyrano(2,3-d)imidazole (8a,b and 9a,b), 2-substituted quinoxaline (11a,b–17a,b) and triazolo(4,3-a)quinoxaline derivatives (18a,b and 19a,b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 g mm2 showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a,b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a,b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a,b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline (12a) display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100 0.3 %.U radu je opisana sinteza, antimikrobno i antitumorsko djelovanje heterocikličkih derivata indola. Polazeći iz 1-benzil- i 1-benzoil-3-bromacetil indola (2a i 2b) sintetizirani su novi heterociklički spojevi 2-tioksoimidazolidini (4a,b), imidazolidin-2,4-dioni (5a,b), pirano(2,3-d)imidazoli (8a,b i 9a,b), 2-supstituirani kinoksalini (11a,b–17a,b) i triazolo(4,3-a)kinoksalini (18a,b i 19a,b). Sintetizirani spojevi testirani su na antimikrobno i antitumorsko djelovanje. Ispitivanje antimikrobnog djelovanja provedeno je s koncentracijama otopina 0,88, 0,44 i 0,22 g mm2 i uspoređeno s referentnim lijekovima cefotaksimom i piperacilinom. Rezultati pokazuju da su 3-(1-supstituirani indol-3-il)kinoksalin-2(1H)oni (11a,b) i 2-(4-metil piperazin-1-il)-3-(1-supstituirani indol-3-il) kinoksalini (15a,b) najaktivniji spojevi na sojeve P. aeruginosa, B. cereus i S. aureus, dok su 2-klor-3-(1-supstituirani indol-3-il)kinoksalini (12a,b) najaktivniji na C. albicans (usporedba s nistatinom). Osim toga, 2-klor-3-(1-benzil indol-3-il) kinoksalin (12a) pokazuje veliku učinkovitost na tumore ovarija miševa (supresija rasta tumora 100 0,3 %)

    Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    Get PDF
    Proteomic analysis of T cells emerging from quiescence identifies dynamic network-level changes in key cellular processes. Disruption of two such processes, ribosome biogenesis and RNA splicing, reveals that the programs controlling cell growth and cell-cycle entry are separable

    Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures

    Get PDF
    Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects

    Comparison of Enzymatic and Non-Enzymatic Means of Dissociating Adherent Monolayers of Mesenchymal Stem Cells

    Get PDF
    The dissociation of adherent mesenchymal stem cell (MSC) monolayers with trypsin and enzyme-free dissociation buffer was compared. A significantly lower proportion of viable cells were obtained with enzyme-free dissociation buffers compared to trypsin. Subsequently, the dissociated cells were re-seeded on new cell culture dishes and were subjected to the MTT assay 24 h later. The proportion of viable cells that reattached was significantly lower for cells obtained by dissociation with enzyme-free dissociation buffer compared to trypsin. Frozen–thawed MSC displayed a similar trend, yielding consistently higher cell viability and reattachment rates when dissociated with trypsin compared to enzyme-free dissociation buffer. It was also demonstrated that exposure of trypsin-dissociated MSC to enzyme-free dissociation buffer for 1 h had no significant detrimental effect on cell viability
    corecore