1,220 research outputs found
Spin Waves in Disordered III-V Diluted Magnetic Semiconductors
We propose a new scheme for numerically computing collective-mode spectra for
large-size systems, using a reformulation of the Random Phase Approximation. In
this study, we apply this method to investigate the spectrum and nature of the
spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local
Mn spins. The spin-wave spectrum is shown to depend sensitively on the
positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge
transport is implied.Comment: 14 pages, including 11 figure
Confirmation and Analysis of Circular Polarization from Sagittarius A*
Recently Bower et al. (1999b) have reported the detection of circular
polarization from the Galactic Center black hole candidate, Sagittarius A*. We
provide an independent confirmation of this detection, and provide some
analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter
Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies
Many of the most interesting and technologically important electronic
materials discovered in the past two decades have two common features: a
layered crystal structure and strong interactions between electrons. Two of the
most fundamental questions about such layered metals concern the origin of
intralayer anisotropies and the coherence of interlayer charge transport. We
show that angle dependent magnetoresistance oscillations (AMRO) are sensitive
to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe
of intralayer anisotropies that is complementary to angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).
However, AMRO are not very sensitive to the coherence of the interlayer
transport. We illustrate this with comparisons to recent AMRO experiments on an
overdoped cuprate.Comment: 7 pages, 3 figure
Quantum interference and weak localisation effects in the interlayer magnetoresistance of layered metals
Studies of angle-dependent magnetoresistance oscillations (AMRO) in the
interlayer conductivity of layered metals have generally considered
semi-classical electron transport. We consider a quantum correction to the
semi-classical conductivity that arises from what can be described as an
interlayer Cooperon. This depends on both the disorder potential within a layer
and the correlations of the disorder potential between layers. We compare our
results with existing experimental data on organic charge transfer salts that
are not explained within the standard semi-classical transport picture. In
particular, our results may be applicable to effects that have been seen when
the applied magnetic field is almost parallel to the conducting layers. We
predict the presence of a peak in the resistivity as the field direction
approaches the plane of the layers. The peak can occur even when there is
weakly incoherent transport between layers.Comment: 11 pages, 6 figure
Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors
We report the results of a Monte Carlo study of a model of (III,Mn)V diluted
magnetic semiconductors which uses an impurity band description of carriers
coupled to localized Mn spins and is applicable for carrier densities below and
around the metal-insulator transition. In agreement with mean field studies, we
find a transition to a ferromagnetic phase at low temperatures. We compare our
results for the magnetic properties with the mean field approximation, as well
as with experiments, and find favorable qualitative agreement with the latter.
The local Mn magnetization below the Curie temperature is found to be spatially
inhomogeneous, and strongly correlated with the local carrier charge density at
the Mn sites. The model contains fermions and classical spins and hence we
introduce a perturbative Monte Carlo scheme to increase the speed of our
simulations.Comment: 17 pages, 24 figures, 2 table
Influence of disorder on the ferromagnetism in diluted magnetic semiconductors
Influence of disorder on the ferromagnetic phase transition in diluted
(III,Mn)V semiconductors is investigated analytically. The regime of small
disorder is addressed, and the enhancement of the critical temperature by
disorder is found both in the mean field approximation and from the analysis of
the zero temperature spin stiffness. Due to disorder, the spin wave
fluctuations around the ferromagnetically ordered state acquire a finite mass.
At large charge carrier band width, the spin wave mass squared becomes
negative, signaling the breakdown of the ferromagnetic ground state and the
onset of a noncollinear magnetic order.Comment: Replaced with revised version. 10 pages, 3 figure
Discovery of circularly polarised radio emission from SS 433
We report the discovery of circularly polarised radio emission from the
radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The
flux density spectrum of the circular polarization, clearly detected at four
frequencies between 1 - 9 GHz, has a spectral index of (-0.9 +/- 0.1). Multiple
components in the source and a lack of very high spatial resolution do not
allow a unique determination of the origin of the circular polarization, nor of
the spectrum of fractional polarization. However, we argue that the emission is
likely to arise in the inner regions of the binary, possibly via
propagation-induced conversion of linear to circular polarization, and the
fractional circular polarization of these regions may be as high as 10%.
Observations such as these have the potential to investigate the composition,
whether pairs or baryonic, of the ejecta from X-ray binaries.Comment: Accepted for publication in ApJ Letter
Noncollinear Ferromagnetism in (III,Mn)V Semiconductors
We investigate the stability of the collinear ferromagnetic state in kinetic
exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions
>. Our results suggest that {\em noncollinear ferromagnetism} is commom to
these semiconductor systems. The instability of the collinear state is due to
long-ranged fluctuations invloving a large fraction of the localized magnetic
moments. We address conditions that favor the occurrence of noncollinear
groundstates and discuss unusual behavior that we predict for the temperature
and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects
simplified, version to appear in Phys. Rev. Let
Magnetic spin excitations in Mn doped GaAs : A model study
We provide a quantitative theoretical model study of the dynamical magnetic
properties of optimally annealed GaMnAs. This model has already
been shown to reproduce accurately the Curie temperatures for
GaMnAs. Here we show that the calculated spin stiffness are in
excellent agreement with those which were obtained from ab-initio based
studies. In addition, an overall good agreement is also found with available
experimental data. We have also evaluated the magnon density of states and the
typical density of states from which the "mobility edge", separating the
extended from localized magnon states, was determined. The power of the model
lies in its ability to be generalized for a broad class of diluted magnetic
semiconductor materials, thus it bridges the gap between first principle
calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the
accepted versio
Ferromagnetism in a dilute magnetic semiconductor -- Generalized RKKY interaction and spin-wave excitations
Carrier-mediated ferromagnetism in a dilute magnetic semiconductor has been
studied using i) a single-impurity based generalized RKKY approach which goes
beyond linear response theory, and ii) a mean-field-plus-spin-fluctuation
(MF+SF) approach within a (purely fermionic) Hubbard-model representation of
the magnetic impurities, which incorporates dynamical effects associated with
finite frequency spin correlations in the ordered state. Due to a competition
between the magnitude of the carrier spin polarization and its oscillation
length scale, the ferromagnetic spin coupling is found to be optimized with
respect to both hole doping concentration and impurity-carrier spin coupling
energy (or equivalently ). The ferromagnetic transition temperature
, deteremined within the spin-fluctuation theory, corresponds closely with
the observed values. Positional disorder of magnetic impurities causes
significant stiffening of the high-energy magnon modes. We also explicitly
study the stability/instability of the mean-field ferromagnetic state, which
highlights the role of competing AF interactions causing spin twisting and
noncollinear ferromagnetic ordering.Comment: 10 pages, 12 figure
- …