Influence of disorder on the ferromagnetic phase transition in diluted
(III,Mn)V semiconductors is investigated analytically. The regime of small
disorder is addressed, and the enhancement of the critical temperature by
disorder is found both in the mean field approximation and from the analysis of
the zero temperature spin stiffness. Due to disorder, the spin wave
fluctuations around the ferromagnetically ordered state acquire a finite mass.
At large charge carrier band width, the spin wave mass squared becomes
negative, signaling the breakdown of the ferromagnetic ground state and the
onset of a noncollinear magnetic order.Comment: Replaced with revised version. 10 pages, 3 figure