12,659 research outputs found

    Loschmidt echoes in two-body random matrix ensembles

    Full text link
    Fidelity decay is studied for quantum many-body systems with a dominant independent particle Hamiltonian resulting e.g. from a mean field theory with a weak two-body interaction. The diagonal terms of the interaction are included in the unperturbed Hamiltonian, while the off-diagonal terms constitute the perturbation that distorts the echo. We give the linear response solution for this problem in a random matrix framework. While the ensemble average shows no surprising behavior, we find that the typical ensemble member as represented by the median displays a very slow fidelity decay known as ``freeze''. Numerical calculations confirm this result and show, that the ground state even on average displays the freeze. This may contribute to explanation of the ``unreasonable'' success of mean field theories.Comment: 9 pages, 5 figures (6 eps files), RevTex; v2: slight modifications following referees' suggestion

    On the dominance of J(P)=0(+) ground states in even-even nuclei from random two-body interactions

    Get PDF
    Recent calculations using random two-body interactions showed a preponderance of J(P)=0(+) ground states, despite the fact that there is no strong pairing character in the force. We carry out an analysis of a system of identical particles occupying orbits with j=1/2, 3/2 and 5/2 and discuss some general features of the spectra derived from random two-body interactions. We show that for random two-body interactions that are not time-reversal invariant the dominance of 0(+) states in this case is more pronounced, indicating that time-reversal invariance cannot be the origin of the 0(+) dominance.Comment: 8 pages, 3 tables and 3 figures. Phys. Rev. C, in pres

    Impacts of a woody invader vary in different vegetation communities

    Get PDF
    The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata , in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised

    Intruder States and their Local Effect on Spectral Statistics

    Full text link
    The effect on spectral statistics and on the revival probability of intruder states in a random background is analysed numerically and with perturbative methods. For random coupling the intruder does not affect the GOE spectral statistics of the background significantly, while a constant coupling causes very strong correlations at short range with a fourth power dependence of the spectral two-point function at the origin.The revival probability is significantly depressed for constant coupling as compared to random coupling.Comment: 18 pages, 10 Postscript figure

    Atomic oxygen studies on polymers

    Get PDF
    The purpose was to study the effects of atomic oxygen on the erosion of polymer based materials. The development of an atomic oxygen neutral beam facility using a SURFATRON surface wave launcher that can produce beam energies between 2 and 3 eV at flux levels as high as approx. 10 to the 17th power atoms/cm (2)-sec is described. Thin film dielectric materials were studied to determine recession rates and and reaction efficiencies as a function of incident beam energy and fluence. Accelerated testing was also accomplished and the values of reaction efficiency compared to available space flight data. Electron microscope photomicrographs of the samples' surface morphology were compared to flight test specimens

    Spectral statistics of the k-body random-interaction model

    Full text link
    We reconsider the question of the spectral statistics of the k-body random-interaction model, investigated recently by Benet, Rupp, and Weidenmueller, who concluded that the spectral statistics are Poissonian. The binary-correlation method that these authors used involves formal manipulations of divergent series. We argue that Borel summation does not suffice to define these divergent series without further (arbitrary) regularization, and that this constitutes a significant gap in the demonstration of Poissonian statistics. Our conclusion is that the spectral statistics of the k-body random-interaction model remains an open question.Comment: 17 pages, no figure

    Ab-initio approach to effective single-particle energies in doubly closed shell nuclei

    Full text link
    The present work discusses, from an ab-initio standpoint, the definition, the meaning, and the usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-nucleon systems and illustrate the necessity to extract ESPEs through the diagonalization of the centroid {\it matrix}, as originally argued by Baranger. For the purpose of illustration, we analyse the impact of correlations on observable one-nucleon separation energies and non-observable ESPEs in selected closed-shell oxygen and calcium isotopes. We then state and illustrate the non-observability of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute necessity to employ consistent structure and reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion from experimental data.Comment: 14 pages, 10 figures, published in Physical Review

    A random matrix approach to decoherence

    Get PDF
    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.Comment: 11 pages, 5 eps-figure
    corecore