1,571 research outputs found

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    The density matrix in the de Broglie-Bohm approach

    Full text link
    If the density matrix is treated as an objective description of individual systems, it may become possible to attribute the same objective significance to statistical mechanical properties, such as entropy or temperature, as to properties such as mass or energy. It is shown that the de Broglie-Bohm interpretation of quantum theory can be consistently applied to density matrices as a description of individual systems. The resultant trajectories are examined for the case of the delayed choice interferometer, for which Bell appears to suggest that such an interpretation is not possible. Bell's argument is shown to be based upon a different understanding of the density matrix to that proposed here.Comment: 15 pages, 4 figure

    Coherent states and the classical-quantum limit considered from the point of view of entanglement

    Full text link
    Three paradigms commonly used in classical, pre-quantum physics to describe particles (that is: the material point, the test-particle and the diluted particle (droplet model)) can be identified as limit-cases of a quantum regime in which pairs of particles interact without getting entangled with each other. This entanglement-free regime also provides a simplified model of what is called in the decoherence approach "islands of classicality", that is, preferred bases that would be selected through evolution by a Darwinist mechanism that aims at optimising information. We show how, under very general conditions, coherent states are natural candidates for classical pointer states. This occurs essentially because, when a (supposedly bosonic) system coherently exchanges only one quantum at a time with the (supposedly bosonic) environment, coherent states of the system do not get entangled with the environment, due to the bosonic symmetry.Comment: This is the definitive version of a paper entitled The classical-quantum limit considered from the point of view of entanglement: a survey (author T. Durt). The older version has been replaced by the definitive on

    QCD Corrections to Vector-Boson Fusion Processes in Warped Higgsless Models

    Get PDF
    We discuss the signatures of a representative Higgsless model with ideal fermion delocalization in vector-boson fusion processes, focusing on the gold- and silver-plated decay modes of the gauge bosons at the CERN-Large Hadron Collider. For this purpose, we have developed a fully-flexible parton-level Monte-Carlo program, which allows for the calculation of cross sections and kinematic distributions within experimentally feasible selection cuts at NLO-QCD accuracy. We find that Kaluza-Klein resonances give rise to very distinctive distributions of the decay leptons. Similar to the Standard Model case, within the Higgsless scenario the perturbative treatment of the vector-boson scattering processes is under excellent control.Comment: 22 pages, 20 figure

    A Laboratory Investigation of Electro-Optic Kerr Effect for Detection of Electric Transmission Line Faults

    Get PDF
    A prototype Kerr cell has been constructed and tested for detecting and identifying faults by monitoring high voltages such as are found in electric power delivery systems. Simulated faults were generated under laboratory conditions and monitored by the Kerr cell. Preliminary analysis was done using analog-to-digital conversion of the detected waveforms with a single board microprocessor serially interfaced with a personal computer. The occurrence of faults is readily observed and results indicate that identification of fault types can be accomplished within less than one cycle of a standard sixty-cycle-per-second delivery system. With a dedicated analysis system such a technique may prove timely and economical in fault identification and location

    An E9 multiplet of BPS states

    Full text link
    We construct an infinite E9 multiplet of BPS states for 11D supergravity. For each positive real root of E9 we obtain a BPS solution of 11D supergravity, or of its exotic counterparts, depending on two non-compact transverse space variables. All these solutions are related by U-dualities realised via E9 Weyl transformations in the regular embedding of E9 in E10, E10 in E11. In this way we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5 brane and the KK6-monopole, as well as other solutions admitting eight longitudinal space dimensions. A novel technique of combining Weyl reflexions with compensating transformations allows the construction of many new BPS solutions, each of which can be mapped to a solution of a dual effective action of gravity coupled to a certain higher rank tensor field. For real roots of E10 which are not roots of E9, we obtain additional BPS solutions transcending 11D supergravity (as exemplified by the lowest level solution corresponding to the M9 brane). The relation between the dual formulation and the one in terms of the original 11D supergravity fields has significance beyond the realm of BPS solutions. We establish the link with the Geroch group of general relativity, and explain how the E9 duality transformations generalize the standard Hodge dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure

    An explicit Schr\"odinger picture for Aharonov's Modular Variable concept

    Full text link
    We propose to address in a natural manner, the modular variable concept explicitly in a Schr\"odinger picture. The idea of Modular Variables was introduced in 1969 by Aharonov, Pendleton and Petersen to explain certain non-local properties of quantum mechanics. Our approach to this subject is based on Schwinger's finite quantum kinematics and it's continuous limit.Comment: 16 pages, 9 figure

    An M-theory solution from null roots in E11

    Full text link
    We find a purely gravitational classical solution of M-theory/eleven-dimensional supergravity which corresponds to a solution of the E10 brane sigma-model involving a null root. This solution is not supersymmetric and is regularly embedded into E11.Comment: 10 page

    NLO QCD corrections to WZ+jet production with leptonic decays

    Get PDF
    We compute the next-to-leading order QCD corrections to WZ+jet production at the Tevatron and the LHC, including decays of the electroweak bosons to light leptons with all off-shell effects taken into account. The corrections are sizable and have significant impact on the differential distributions.Comment: 14 pages, 7 figure

    Cooling to the Ground State of Axial Motion for One Atom Strongly Coupled to an Optical Cavity

    Get PDF
    Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy 13uK is occupied with probability P0~0.95.Comment: 5 pages, 4 figure
    • …
    corecore