17,157 research outputs found
A Mathematical Model for Estimating Biological Damage Caused by Radiation
We propose a mathematical model for estimating biological damage caused by
low-dose irradiation. We understand that the Linear Non Threshold (LNT)
hypothesis is realized only in the case of no recovery effects. In order to
treat the realistic living objects, our model takes into account various types
of recovery as well as proliferation mechanism, which may change the resultant
damage, especially for the case of lower dose rate irradiation. It turns out
that the lower the radiation dose rate, the safer the irradiated system of
living object (which is called symbolically "tissue" hereafter) can have
chances to survive, which can reproduce the so-called dose and dose-rate
effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of
Japa
Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood
For the first time, we present a novel and fully integrated centrifugal microfluidic “ lab-on-a-disk” for rapid metabolic assays in human whole blood. All essential steps comprising blood sampling, metering, plasma extraction and the final optical detection are conducted within t = 150 s in passive structures integrated on one disposable disk. Our technology features a novel plasma extraction structure (V = 500 nL, CV < 5%) without using any hydrophobic microfluidics where the purified plasma (cRBC< 0.11%) is centrifugally separated and subsequently extracted through a capillarily primed extraction channel into the detection chamber. While this capillary extraction requires precisely defined, narrow micro-structures, the reactive mixing and detection is most efficient within larger cavities. The corresponding manufacturing technique of these macro- and micro structures in the range of 30 µ m to 1000 µ m is also presented for the first time: A novel, cost-efficient hybrid prototyping technique of a multiscale epoxy master for subsequent hot embossing of polymer disks
Global mean sea surface computation based upon a combination of SEASAT and GEOS-3 satellite altimeter data
A mean sea surface map was computed for the global ocean areas between 70 deg N latitude and 62 deg S latitude based upon the 70 day SEASAT and 3.5 year GEOS-3 altimeter data sets. The mean sea surface is presented in the form of a global contour map and a 0.25 deg x 0.25 deg grid. A combination of regional adjustments based upon crossover techniques and the subsequent adjustment of the regional solutions into a global reference system was employed in order to minimize the effects of radial orbit error. A global map of the crossover residuals after the crossover adjustments are made is in good agreement with earlier mesoscale variability contour maps based upon the last month of SEASAT collinear data. This high level of agreement provides good evidence that relative orbit error was removed to the decimeter level on a regional basis. This represents a significant improvement over our previous maps which contained patterns, particularly in the central Pacific, which were due to radial orbit error. Long wavelength, basin scale errors are still present with a submeter amplitude due to errors in the PGS-S4 gravity model. Such errors can only be removed through the improvement of the Earth's gravity model and associated geodetic parameters
The fractional Keller-Segel model
The Keller-Segel model is a system of partial differential equations
modelling chemotactic aggregation in cellular systems. This model has blowing
up solutions for large enough initial conditions in dimensions d >= 2, but all
the solutions are regular in one dimension; a mathematical fact that crucially
affects the patterns that can form in the biological system. One of the
strongest assumptions of the Keller-Segel model is the diffusive character of
the cellular motion, known to be false in many situations. We extend this model
to such situations in which the cellular dispersal is better modelled by a
fractional operator. We analyze this fractional Keller-Segel model and find
that all solutions are again globally bounded in time in one dimension. This
fact shows the robustness of the main biological conclusions obtained from the
Keller-Segel model
Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography
We present a novel method to mount and align an optical-fiber-based resonator
on the flat surface of an atom chip with ultrahigh precision. The structures
for mounting a pair of fibers, which constitute the fiber resonator, are
produced by a spin-coated SU-8 photoresist technique by use of deep-UV
lithography. The design and production of the SU-8 structures are discussed.
From the measured finesses we calculate the coupling loss of the SU-8
structures acting as a kind of fiber splice to be smaller than 0.013 dB.Comment: 4 pages, 3 figure
Direct hemoglobin measurement by monolithically integrated optical beam guidance
We present a concept for optical beam guidance by total internal reflection (TIR) at V-grooves as retro reflectors which are monolithically integrated on a microfluidic "lab-on-a-disk". This way, the optical path length through a measurement chamber and thus the sensitivity of colorimetric assays is massively enhanced compared to direct (perpendicular) beam incidence. With this rugged optical concept, we determine the concentration of hemoglobin (Hb) in human whole blood. Outstanding features are a high degree of linearity (R2 = 0.993) between the optical signal and the Hb together with a reproducibility of CV= 2.9 %, and a time-to-result of 100 seconds, only
Chemotactic Collapse and Mesenchymal Morphogenesis
We study the effect of chemotactic signaling among mesenchymal cells. We show
that the particular physiology of the mesenchymal cells allows one-dimensional
collapse in contrast to the case of bacteria, and that the mesenchymal
morphogenesis represents thus a more complex type of pattern formation than
those found in bacterial colonies. We finally compare our theoretical
predictions with recent in vitro experiments
Parallelization of chip-based fluorescence immuno-assays with quantum-dot labelled beads
This paper presents an optical concept for the read-out of a parallel, bead-based fluorescence immunoassay conducted on a lab-on-a-disk platform. The reusable part of the modular setup comprises a detection unit featuring a single LED as light source, two emission-filters, and a color CCD-camera as standard components together with a spinning drive as actuation unit. The miniaturized lab-on-a-disk is devised as a disposable. In the read-out process of the parallel assay, beads are first identified by the color of incorporated quantum dots (QDs). Next, the reaction-specific fluorescence signal is quantified with FluoSpheres-labeled detection anti-bodies. To enable a fast and automated read-out, suitable algorithms have been implemented in this work. Based on this concept, we successfully demonstrated a Hepatitis-A assay on our disk-based lab-on-a-chip
The Two Fluid Drop Snap-off Problem: Experiments and Theory
We address the dynamics of a drop with viscosity breaking up
inside another fluid of viscosity . For , a scaling theory
predicts the time evolution of the drop shape near the point of snap-off which
is in excellent agreement with experiment and previous simulations of Lister
and Stone. We also investigate the dependence of the shape and
breaking rate.Comment: 4 pages, 3 figure
- …