816,899 research outputs found

    Quasi-dark Mode in a Metamaterial for Analogous Electromagnetically-induced Transparency

    Full text link
    We study a planar metamaterial supporting electromagnetically-induced transparency (EIT)-like effect by exploiting the coupling between bright and quasi-dark eigenmodes. The specific design of such a metamaterial consists of a cut-wire (CW) and a single-gap split-ring resonator (SRR). From the numerical and the analytical results we demonstrate that the response of SRR, which is weakly excited by external electric field, is mitigated to be a quasi-dark eigenmode in the presence of strongly radiative CW. This result suggests more relaxed conditions for the realization of devices utilizing the EIT-like effects in metamaterial, and thereby widens the possibilities for many different structural implementations.Comment: 11 pages, 4 figure

    Investigation of the anisotropy of dissipation processes in single crystal of Yba2Cu3O7-d system

    Full text link
    By means of contactless mechanical method of the measurement of energy losses in superconductors, the anisotropy of dissipation processes has been studied in single crystal high-temperature layered superconductors of Yba2Cu3O7-d system, being in mixed state. The observed anisotropy of energy losses indicates the possibility of the existence of the symmetry of order parameter of dx2-y2 type in these single crystals.Comment: 4 pages, 3 figure

    Comment on "Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars"

    Full text link
    In their Letter [Phys. Rev. Lett. 92, 121302 (2004)] (also [Astron. Astrophys. 417, 853 (2004)]), Srianand et al. analysed optical spectra of heavy-element species in 23 absorption systems along background quasar sight-lines, reporting limits on relative variations in the fine-structure constant: da/a=(-0.06+/-0.06) x 10^{-5}. Here we demonstrate basic flaws in their analysis, using the same data and absorption profile fits, which led to spurious values of da/a and significantly underestimated uncertainties. We conclude that these data and fits offer no stringent test of previous evidence for a varying alpha. In their Reply (arXiv:0711.1742) to this Comment, Srianand et al. state or argue several points regarding their original analysis and our new analysis. We discuss these points here, dismissing all of them because they are demonstrably incorrect or because they rely on a flawed application of simple statistical arguments.Comment: 1+2 pages, 1 EPS figure. Page 1 accepted as PRL Comment on arXiv:astro-ph/0402177 . Further details available in arXiv:astro-ph/0612407 . v2: Added critical discussion of Reply from Srianand et al. (arXiv:0711.1742

    Random Scattering Matrices and the Circuit Theory of Andreev Conductances

    Full text link
    The conductance of a normal-metal mesoscopic system in proximity to superconducting electrode(s) is calculated. The normal-metal part may have a general geometry, and is described as a ``circuit'' with ``leads'' and ``junctions''. The junctions are each ascribed a scattering matrix which is averaged over the circular orthogonal ensemble, using recently-developed techniques. The results for the electrical conductance reproduce and extend Nazarov's circuit theory, thus bridging between the scattering and the bulk approaches. The method is also applied to the heat conductance.Comment: 12 pages, RevTeX, including 2 figures with eps

    Vector Meson Production in Coherent Hadronic Interactions: An update on predictions for RHIC and LHC

    Full text link
    In this letter we update our predictions for the photoproduction of vector mesons in coherent pppp and AAAA collisions at RHIC and LHC energies using the color dipole approach and the Color Glass Condensate (CGC) formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/ΨJ/\Psi and ρ\rho cross sections at RHIC energies.Comment: 4 pages, 3 figure
    corecore