77 research outputs found

    Pengaruh Kontak Kulit ke Kulit Segera terhadap Keyakinan Ibu Menyusui Paska Bedah Sesar

    Full text link
    Terdapat beberapa faktor yang memengaruhi keberhasilan dalam menyusui. Kontak kulit ke kulit segera setelah bayi lahir merupakan faktor kunci dalam proses laktasi. Proses ini sangat tergantung dari keyakinan ibu dalam menyusui bayinya. Penelitian ini bertujuan untuk mengetahui pengaruh kontak kulit ke kulit segera terhadap keyakinan ibu menyusui paska bedah sesar. Penelitian quasi eksperiment posttest only design with control groups ini dilakukan pada 52 ibu dibagi menjadi kelompok kontrol dan kelompok intervensi masing-masing 26 ibu secara consecutive sampling di kota Langsa-Aceh. Pengambilan data menggunakan instrumen Breastfeeding Self-Efficacy Scale-Short Form. Hasil uji statistik indenpendent t test menunjukkan adanya perbedaan nilai rerata keyakinan ibu menyusui pada kelompok intervensi dan kelompok kontrol (59,00±6,54; 49,62±7,78; p=0,001). Kontak kulit ke kulit dapat meningkatkan keyakinan ibu menyusui yang dapat memengaruhi proses laktasi

    The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay

    Get PDF
    Recruitment of the human ribonucleolytic RNA exosome to nuclear polyadenylated (pA(+)) RNA is facilitated by the Poly(A) Tail eXosome Targeting (PAXT) connection. Besides its core dimer, formed by the exosome co-factor MTR4 and the ZFC3H1 protein, the PAXT connection remains poorly defined. By characterizing nuclear pA(+)-RNA bound proteomes as well as MTR4-ZFC3H1 containing complexes in conditions favoring PAXT assembly, we here uncover three additional proteins required for PAXT function: ZC3H3, RBM26 and RBM27 along with the known PAXT-associated protein, PABPN1. The zinc-finger protein ZC3H3 interacts directly with MTR4-ZFC3H1 and loss of any of the newly identified PAXT components results in the accumulation of PAXT substrates. Collectively, our results establish new factors involved in the turnover of nuclear pA(+) RNA and suggest that these are limiting for PAXT activity

    Phosphorylation of the ribosomal protein RPL12/uL11 affects translation during mitosis

    Get PDF
    Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation

    Bounds for Lepton Flavor Violation and the Pseudoscalar Higgs in the General Two Higgs Doublet Model using g2g-2 muon factor

    Full text link
    Current experimental data from the g2g-2 muon factor, seems to show the necessity of physics beyond the Standard Model (SM), since the difference between SM and experimental predictions is 2.6σ\sigma . In the framework of the General Two Higgs Doublet Model (2HDM), we calculate the muon anomalous magnetic moment to get lower and upper bounds for the Flavour Changing (FC) Yukawa couplings in the leptonic sector. We also obtain lower bounds for the mass of the pseudoscalar Higgs (mA0m_{A^0}) as a function of the parameters of the model.Comment: 12 pages, RevTex4, 5 figures. Improved presentation, updated experimental data, amplified analysis, new figures added. Subbmited to Phys. Rev.

    Lepton Flavor Violation in the Two Higgs Doublet Model type III

    Get PDF
    We consider the Two Higgs Doublet Model (2HDM) of type III which leads to Flavour Changing Neutral Currents (FCNC) at tree level in the leptonic sector. In the framework of this model we can have, in principle, two situations: the case (a) when both doublets acquire a vacuum expectation value different from zero and the case (b) when only one of them is not zero. In addition, we show that we can make two types of rotations for the flavor mixing matrices which generates four types of lagrangians, with the rotation of type I we recover the case (b) from the case (a) in the limit tanβ\tan \beta \to \infty , and with the rotation of type II we obtain the case (b) from (a) in the limit tanβ0.\tan \beta \to 0. Moreover, two of the four possible lagrangians correspond to the models of types I and II plus Flavor Changing (FC) interactions. The analitical expressions of the partial lepton number violating widths Γ(μeee)\Gamma (\mu \to eee) and Γ(μeγ)\Gamma (\mu \to e\gamma) are derived for the cases (a) and (b) and both types of rotations. In all cases these widths go asymptotically to zero in the decoupling limit for all Higgses. We present from our analysis upper bounds for the flavour changing transition μe,\mu \to e, and we show that such bounds are sensitive to the VEV structure and the type of rotation utilized.Comment: 7 pages RevTeX4, 4 figures postscript, new section added and some new reference

    Self-disclosure and perceived responsiveness among youth with asthma:Links to affect and anti-inflammatory gene expression

    Get PDF
    Self-disclosure and perceived responsiveness are important building blocks of social relationships that have long-lasting consequences for health and well-being. However, the conditions under which self-disclosure and responsiveness are likely to benefit health, and how early in life these benefits arise, remain unclear. Among 141 youth (aged 10–17) with asthma, we investigated how average daily levels of self-disclosure and responsiveness are linked to positive and negative affect and the expression of the glucocorticoid receptor gene NR3C1, a marker of improved regulation of stress physiology and immune functioning. Higher levels of self-disclosure were associated with higher NR3C1 expression and positive affect only when perceptions of responsiveness were high. Furthermore, perceived responsiveness was linked to NR3C1 expression for females but not males. These results suggest that the potential benefits of self-disclosure depend on the extent to which interaction partners are perceived as responsive and that these benefits emerge prior to adulthood

    The architecture of protein synthesis in the developing neocortex at near-atomic resolution reveals Ebp1-mediated neuronal proteostasis at the 60S tunnel exit

    Get PDF
    Protein synthesis must be finely tuned in the nervous system, as it represents an essential feature of neurodevelopmental gene expression, and dominant pathology in neurological disease. However, the architecture of ribosomal complexes in the developing mammalian brain has not been analyzed at high resolution. This study investigates the architecture of ribosomes ex vivo from the embryonic and perinatal mouse neocortex, revealing Ebp1 as a 60S peptide tunnel exit binding factor at near-atomic resolution by multiparticle cryo-electron microscopy. The impact of Ebp1 on the neuronal proteome was analyzed by pSILAC and BONCAT coupled mass spectrometry, implicating Ebp1 in neurite outgrowth proteostasis, with in vivo embryonic Ebp1 knockdown resulting in dysregulation of neurite outgrowth. Our findings reveal Ebp1 as a central component of neocortical protein synthesis, and the 60S peptide tunnel exit as a focal point of gene expression control in the molecular specification of neuronal morphology

    RNA localization is a key determinant of neurite-enriched proteome

    Get PDF
    Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity. Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity

    PI3 kinase and FOXO1 transcription factor activity differentially control B cells in the germinal center light and dark zones

    Get PDF
    Phosphatidylinositol 3' OH kinase (PI3K) signaling and FOXO transcription factors play opposing roles at several B cell developmental stages. We show here abundant nuclear FOXO1 expression in the proliferative compartment of the germinal center (GC), its dark zone (DZ), and PI3K activity, downregulating FOXO1, in the light zone (LZ), where cells are selected for further differentiation. In the LZ, however, FOXO1 was expressed in a fraction of cells destined for DZ reentry. Upon FOXO1 ablation or induction of PI3K activity, GCs lost their DZ, owing at least partly to downregulation of the chemokine receptor CXCR4. Although this prevented proper cyclic selection of cells in GCs, somatic hypermutation and proliferation were maintained. Class switch recombination was partly lost due to a failure of switch region targeting by activation-induced deaminase (AID)
    corecore