3,074 research outputs found

    A Novel Photonic Material for Designing Arbitrarily Shaped Waveguides in Two Dimensions

    Get PDF
    We investigate numerically optical properties of novel two-dimensional photonic materials where parallel dielectric rods are randomly placed with the restriction that the distance between rods is larger than a certain value. A large complete photonic gap (PG) is found when rods have sufficient density and dielectric contrast. Our result shows that neither long-range nor short-range order is an essential prerequisite to the formation of PGs. A universal principle is proposed for designing arbitrarily shaped waveguides, where waveguides are fenced with side walls of periodic rods and surrounded by the novel photonic materials. We observe highly efficient transmission of light for various waveguides. Due to structural uniformity, the novel photonic materials are best suited for filling up the outer region of waveguides of arbitrary shape and dimension comparable with the wavelength.Comment: 4 figure

    Global Anisotropy Versus Small-Scale Fluctuations in Neutrino Flux in Core-Collapse Supernova Explosions

    Full text link
    Effects of small-scale fluctuations in the neutrino radiation on core-collapse supernova explosions are examined. Through a parameter study with a fixed radiation field of neutrinos, we find substantial differences between the results of globally anisotropic neutrino radiation and those with fluctuations. As the number of modes of fluctuations increases, the shock positions, entropy distributions, and explosion energies approach those of spherical explosion. We conclude that global anisotropy of the neutrino radiation is the most effective mechanism of increasing the explosion energy when the total neutrino luminosity is given. This supports the previous statement on the explosion mechanism by Shimizu and coworkers.Comment: 14 pages, including 12 figures. To be published in the Astrophysical Journa

    Determination of phase equilibria in confined systems by open pore cell Monte Carlo method.

    Get PDF
    We present a modification of the molecular dynamics simulation method with a unit pore cell with imaginary gas phase [M. Miyahara, T. Yoshioka, and M. Okazaki, J. Chem. Phys. 106, 8124 (1997)] designed for determination of phase equilibria in nanopores. This new method is based on a Monte Carlo technique and it combines the pore cell, opened to the imaginary gas phase (open pore cell), with a gas cell to measure the equilibrium chemical potential of the confined system. The most striking feature of our new method is that the confined system is steadily led to a thermodynamically stable state by forming concave menisci in the open pore cell. This feature of the open pore cell makes it possible to obtain the equilibrium chemical potential with only a single simulation run, unlike existing simulation methods, which need a number of additional runs. We apply the method to evaluate the equilibrium chemical potentials of confined nitrogen in carbon slit pores and silica cylindrical pores at 77 K, and show that the results are in good agreement with those obtained by two conventional thermodynamic integration methods. Moreover, we also show that the proposed method can be particularly useful for determining vapor-liquid and vapor-solid coexistence curves and the triple point of the confined system

    Collisional stability of localized Yb(3P2{}^3\mathrm{P}_2) atoms immersed in a Fermi sea of Li

    Get PDF
    We establish an experimental method for a detailed investigation of inelastic collisional properties between ytterbium (Yb) in the metastable 3P2{}^3\mathrm{P}_2 state and ground state lithium (Li). By combining an optical lattice and a direct excitation to the 3P2{}^3\mathrm{P}_2 state we achieve high selectivity on the collisional partners. Using this method we determine inelastic loss coefficients in collisions between 174^{174}Yb(3P2{}^3\mathrm{P}_2) with magnetic sublevels of mJ=0m_J=0 and 2-2 and ground state 6^6Li to be (4.4±0.3)×1011 cm3/s(4.4\pm0.3)\times10^{-11}~\mathrm{cm}^3/\mathrm{s} and (4.7±0.8)×1011 cm3/s(4.7\pm0.8)\times10^{-11}~\mathrm{cm}^3/\mathrm{s}, respectively. Absence of spin changing processes in Yb(3P2{}^3\mathrm{P}_2)-Li inelastic collisions at low magnetic fields is confirmed by inelastic loss measurements on the mJ=0m_J=0 state. We also demonstrate that our method allows us to look into loss processes in few-body systems separately.Comment: 12 pages, 7 figure

    Gravitational wave forms for a three-body system in Lagrange's orbit: parameter determinations and a binary source test

    Full text link
    Continuing work initiated in an earlier publication [Torigoe et al. Phys. Rev. Lett. {\bf 102}, 251101 (2009)], gravitational wave forms for a three-body system in Lagrange's orbit are considered especially in an analytic method. First, we derive an expression of the three-body wave forms at the mass quadrupole, octupole and current quadrupole orders. By using the expressions, we solve a gravitational-wave {\it inverse} problem of determining the source parameters to this particular configuration (three masses, a distance of the source to an observer, and the orbital inclination angle to the line of sight) through observations of the gravitational wave forms alone. For this purpose, the chirp mass to a three-body system in the particular configuration is expressed in terms of only the mass ratios by deleting initial angle positions. We discuss also whether and how a binary source can be distinguished from a three-body system in Lagrange's orbit or others.Comment: 21 pages, 3 figures, 1 table; text improved, typos corrected; accepted for publication in PR

    Critical phenomena in Newtonian gravity

    Get PDF
    We investigate the stability of self-similar solutions for a gravitationally collapsing isothermal sphere in Newtonian gravity by means of a normal mode analysis. It is found that the Hunter series of solutions are highly unstable, while neither the Larson-Penston solution nor the homogeneous collapse one have an analytic unstable mode. Since the homogeneous collapse solution is known to suffer the kink instability, the present result and recent numerical simulations strongly support a proposition that the Larson-Penston solution will be realized in astrophysical situations. It is also found that the Hunter (A) solution has a single unstable mode, which implies that it is a critical solution associated with some critical phenomena which are analogous to those in general relativity. The critical exponent γ\gamma is calculated as γ0.10567\gamma\simeq 0.10567. In contrast to the general relativistic case, the order parameter will be the collapsed mass. In order to obtain a complete picture of the Newtonian critical phenomena, full numerical simulations will be needed.Comment: 25 pages, 7 figures, accepted for publication in Physical Review

    Kompenzacija trenja u mikrosustavima upravljanja na daljinu

    Get PDF
    In this project, we construct micro tele-operation systems which enable human operators to performe micro tasks, such as assembly or manufacturing, without feeling a stress. We introduce haptic interfaces that give operators the impression as if he/she were touching the expanded micro objects with his/her fingers. We construct simulator systems modeled on remote environment. In this paper we give an outline and concept of this project. This research project can not only extend bilateral tele-operation to many other industries, it can also extend this human-friendly technique and thus help realize savings in resources, energy, costs and human support.Opisana je izvedba mikrosustava za rad na daljinu koji omogućava bez stresa obavljanje mikroradnji, kao što su montaža i proizvodnja. Prikazano je haptičko sučelje kojim se oponaša dodir uvećanog mikroobjekta prstima rukovatelja. Također je opisan koncept sustava i simulator sustava. Istraživanje izloženo u ovome radu, osim što može uvesti daljinsko upravljanje na mikro razini u mnogim granama industrije, otvara i mogućnosti primjene za štednju resursa, energije i troškova

    Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO2

    Full text link
    We report physical properties of the conductive magnet PdCrO2 consisting of a layered structure with a triangular lattice of Cr3+ ions (S=3/2). We confirmed an antiferromagnetic transition at TN=37.5K by means of specific heat, electrical resistivity, magnetic susceptibility, and neutron scattering measurements. The critical behavior in the specific heat persists in an unusually wide temperature range above TN. This fact implies that spin correlations develop even at much higher temperature than TN. The observed sub-linear temperature dependence of the resistivity above TN is also attributed to the short-range correlations among the frustrated spins. While the critical exponent for the magnetization agrees reasonably with the prediction of the relevant model, that for the specific heat evaluated in the wide temperature range differs substantially from the prediction.Comment: 7 pages, 6 figure
    corecore