4,631 research outputs found

    Long-Term X-ray Monitoring of 1E 1740.7-2942 and GRS 1758-258

    Full text link
    We report on long-term observations of the Galactic-bulge black hole candidates 1E 1740.7-2942 and GRS 1758-258 with the Rossi X-Ray Timing Explorer. 1E 1740.7-2942 has been observed 77 times and GRS 1758-258 has been observed 82 times over the past 1000 days. The flux of each object has varied by no more than a factor of 2.5 during this period, and the indices of the energy spectra have varied by no more than 0.4. The power spectra are similar to other black-hole candidates: flat-topped noise, breaking to a power law. Each object has exhibited a brightening that lasted for several months, and we have a found a time lag between the photon power-law index and the count rate. In both sources, the spectrum is softest during the decline from the brightening. This behavior can be understood in the context of thin-disk and advection-dominated accretion flows coexisting over a wide range of radii, with the implication that both sources have low-mass companions and accrete via Roche-lobe overflow.Comment: Accepted for publication in The Astrophysical Journa

    XTE J1739-302: An Unusual New X-ray Transient

    Get PDF
    A new x-ray transient, designated XTE J1739-302, was discovered with the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) in data from 12 August 1997. Although it was the brightest source in the Galactic Center region while active (about 3.0 x 10^-9 ergs/cm2/s from 2 to 25 keV), it was only observed on that one day; it was not detectable nine days earlier or two days later. There is no known counterpart at other wavelengths, and its proximity to the Galactic Center will make such an identification difficult due to source confusion and extinction. The x-ray spectrum and intensity suggest a giant outburst of a Be/neutron star binary, although no pulsations were observed and the outburst was shorter than is usual from these systems.Comment: 11 pages incorporating 6 figures, AAStex; accepted for The Astrophysical Journal, Part 2 (Letters

    Infrared scintillation yield in gaseous and liquid argon

    Full text link
    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.Comment: 6 pages, 5 figures. Submitted to Europhysics Letter. Revised Figs. 3 and

    Energy-Dependent Harmonic Ratios of the Cyclotron Features of X0331+53 in the 2004-2005 Outburst

    Full text link
    We report on changes of the cyclotron resonance energies of the recurrent transient pulsar, X0331+53 (V0332+53). The whole RXTE data acquired in the 2004-2005 outburst were utilized. The 3-80 keV source luminosity varied between 1.7x10^36 and 3.5x10^38 ers/s, assuming a distance of 7 kpc. We confirmed that the fundamental cyclotron resonance energy changed from ~22 to ~27 keV in a clear anti-correlation to the source luminosity, and without any hysteresis effects between the rising and declining phases of the outburst. In contrast, the second harmonic energy changed from ~49 to ~54 keV, implying a weaker fractional change as a function of the luminosity. As a result, the observed resonance energy ratio between the second harmonic and the fundamental was ~2.2 when the source was most luminous, whereas the ratio decreased to the nominal value of 2.0 at the least luminous state. Although the significance of this effect is model dependent, these results suggest that the fundamental and second harmonic resonances represent different heights in the accretion column, depending on the mass accretion rate.Comment: 39 pages, 15 figures, 4 tables. Accepted for publication in Astrophysical Journa

    Discovery of the INTEGRAL X/Gamma-ray transient IGR J00291+5934: a Comptonised accreting ms pulsar ?

    Full text link
    We report the discovery of a high-energy transient with the IBIS/ISGRI detector on board the INTEGRAL observatory. The source, namely IGR J00291+5934, was first detected on 2nd December 2004 in the routine monitoring of the IBIS/ISGRI 20--60 keV images. The observations were conducted during Galactic Plane Scans, which are a key part of the INTEGRAL Core Programme observations. After verifying the basic source behaviour, the discovery was announced on 3rd December. The transient shows a hard Comptonised spectrum, with peak energy release at about 20 keV and a total luminosity of ~ 0.9E36 erg/s in the 5--100 keV range, assuming a distance of 3 kpc. Following the INTEGRAL announcement of the discovery of IGR J00291+5934, a number of observations were made by other instruments. We summarise the results of those observations and, together with the INTEGRAL data, identifiy IGR J00291+5934 as the 6th member of a class of accreting X-ray millisecond pulsars.Comment: Accepted for publication as an A&A Letter 24/01/2005. 5 pages, 2 figure

    XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

    Full text link
    We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km for a 1.4 Msun neutron star. The disc therefore appears truncated inside the corotation radius (31 km for SAX J1808.4-3658) in agreement with the fact that the source was still showing pulsations during the XMM-Newton observation.Comment: 5 pages, 3 figures, accepted for publication in A&A Letters, typos corrected, references adde
    corecore