4,284 research outputs found
Transverse thermoelectric effect in La0.67Sr0.33MnO3|SrRuO3 superlattices
Transverse thermoelectric effects in response to an out-of-plane heat current
have been studied in an external magnetic field for ferromagnetic superlattices
consisting of La0.67Sr0.33MnO3 and SrRuO3 layers. The superlattices were
fabricated on SrTiO3 substrates by pulsed laser deposition. We found that the
sign of the transverse thermoelectric voltage for the superlattices is opposite
to that for La0.67Sr0.33MnO3 and SrRuO3 single layers at 200 K, implying an
important role of spin Seebeck effects inside the superlattices. At 10 K, the
magnetothermoelectric curves shift from the zero field due to an
antiferromagnetic coupling between layers in the superlattices
CO observations of galaxies with the Nobeyama 45-M telescope
High-resolution (15 inch), filled aperture maps of the CO (J = 1-0) line emission were obtained for several nearby, CO-bright galaxies like M82, M83, IC342, and NGC891 in order to study star forming activity in these galaxies
A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity
To examine how non-uniform nature of the Galactic gravity might affect length
and time scales of the Parker instability, we took three models of gravity,
uniform, linear and realistic ones. To make comparisons of the three gravity
models on a common basis, we first fixed the ratio of magnetic pressure to gas
pressure at = 0.25, that of cosmic-ray pressure at = 0.4, and
the rms velocity of interstellar clouds at = 6.4 km s, and then
adjusted parameters of the gravity models in such a way that the resulting
density scale heights for the three models may all have the same value of 160
pc. Performing linear stability analyses onto equilibrium states under the
three models with the typical ISM conditions, we calculate the maximum growth
rate and corresponding length scale for each of the gravity models. Under the
uniform gravity the Parker instability has the growth time of 1.2
years and the length scale of 1.6 kpc for symmetric mode. Under the realistic
gravity it grows in 1.8 years for both symmetric and
antisymmetric modes, and develops density condensations at intervals of 400 pc
for the symmetric mode and 200 pc for the antisymmetric one. A simple change of
the gravity model has thus reduced the growth time by almost an order of
magnitude and its length scale by factors of four to eight. These results
suggest that an onset of the Parker instability in the ISM may not necessarily
be confined to the regions of high and .Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with
9 figure
Cardiomyocytes Produces Acetylcholine in Response to Muscarinic Receptor Stimulation: a Possible Mechanism for Amplification of Cardioprotective Effects of Cardiac Vagal Nerve
Discovery of High-Latitude CO in a HI Supershell in NGC 5775
We report the discovery of very high latitude molecular gas in the edge-on
spiral galaxy, NGC 5775. Emission from both the J=1-0 and 2-1 lines of 12CO is
detected up to 4.8 kpc away from the mid-plane of the galaxy. NGC 5775 is known
to host a number of HI supershells. The association of the molecular gas
M(H2,F2) = 3.1x10^7 solar masses reported here with one of the HI supershells
(labeled F2) is clear, which suggests that molecular gas may have survived the
process which originally formed the supershell. Alternatively, part of the gas
could have been formed in situ at high latitude from shock-compression of
pre-existing HI gas. The CO J=2-1/J=1-0 line ratio of 0.34+-40% is
significantly lower than unity, which suggests that the gas is excited
subthermally, with gas density a few times 100 cubic cm. The molecular gas is
likely in the form of cloudlets which are confined by magnetic and cosmic rays
pressure. The potential energy of the gas at high latitude is found to be
2x10^56 ergs and the total (HI + H2) kinetic energy is 9x10^53 ergs. Based on
the energetics of the supershell, we suggest that most of the energy in the
supershell is in the form of potential energy and that the supershell is on the
verge of falling and returning the gas to the disk of the galaxy.Comment: Accept by ApJL, 4 pages, 3 ps figure
Facilitation of I Kr current by some hERG channel blockers suppresses early afterdepolarizations.
Drug-induced block of the cardiac rapid delayed rectifying potassium current (I Kr), carried by the human ether-a-go-go-related gene (hERG) channel, is the most common cause of acquired long QT syndrome. Indeed, some, but not all, drugs that block hERG channels cause fatal cardiac arrhythmias. However, there is no clear method to distinguish between drugs that cause deadly arrhythmias and those that are clinically safe. Here we propose a mechanism that could explain why certain clinically used hERG blockers are less proarrhythmic than others. We demonstrate that several drugs that block hERG channels, but have favorable cardiac safety profiles, also evoke another effect; they facilitate the hERG current amplitude in response to low-voltage depolarization. To investigate how hERG facilitation impacts cardiac safety, we develop computational models of I Kr block with and without this facilitation. We constrain the models using data from voltage clamp recordings of hERG block and facilitation by nifekalant, a safe class III antiarrhythmic agent. Human ventricular action potential simulations demonstrate the ability of nifekalant to suppress ectopic excitations, with or without facilitation. Without facilitation, excessive I Kr block evokes early afterdepolarizations, which cause lethal arrhythmias. When facilitation is introduced, early afterdepolarizations are prevented at the same degree of block. Facilitation appears to prevent early afterdepolarizations by increasing I Kr during the repolarization phase of action potentials. We empirically test this prediction in isolated rabbit ventricular myocytes and find that action potential prolongation with nifekalant is less likely to induce early afterdepolarization than action potential prolongation with dofetilide, a hERG channel blocker that does not induce facilitation. Our data suggest that hERG channel blockers that induce facilitation increase the repolarization reserve of cardiac myocytes, rendering them less likely to trigger lethal ventricular arrhythmias
The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and CI
This paper presents CI, CO J=4-3, and CO J=3-2 maps of the barred spiral
galaxy M83 taken at the James Clerk Maxwell Telescope. Observations indicate a
double peaked structure which is consistent with gas inflow along the bar
collecting at the inner Lindblad resonance. This structure suggests that
nuclear starbursts can occur even in galaxies where this inflow/collection
occurs, in contrast to previous studies of barred spiral galaxies. However, the
observations also suggest that the double peaked emission may be the result of
a rotating molecular ring oriented nearly perpendicular to the main disk of the
galaxy. The CO J=4-3 data indicate the presence of warm gas in the nucleus that
is not apparent in the lower-J CO observations, which suggests that CO J=1-0
emission may not be a reliable tracer of molecular gas in starburst galaxies.
The twelve CI/CO J=4-3 line ratios in the inner 24'' x 24'' are uniform at the
2 sigma level, which indicates that the CO J=4-3 emission is originating in the
same hot photon-dominated regions as the CI emission. The CO J=4-3/J=3-2 line
ratios vary significantly within the nucleus with the higher line ratios
occurring away from peaks of emission along an arc of active star forming
regions. These high line ratios (>1) likely indicate optically thin gas created
by the high temperatures caused by star forming regions in the nucleus of this
starburst galaxy.Comment: 15 pages with 10 figures. To appear in the August 10 1998 issue of
The Astrophysical Journa
The 2006 Radio Outburst of a Microquasar Cyg X-3: Observation and Data
We present the results of the multi-frequency observations of radio outburst
of the microquasar Cyg X-3 in February and March 2006 with the Nobeyama 45-m
telescope, the Nobeyama Millimeter Array, and the Yamaguchi 32-m telescope.
Since the prediction of a flare by RATAN-600, the source has been monitored
from Jan 27 (UT) with these radio telescopes. At the eighteenth day after the
quench of the activity, successive flares exceeding 1 Jy were observed
successfully. The time scale of the variability in the active phase is
presumably shorter in higher frequency bands.
We also present the result of a follow-up VLBI observation at 8.4 GHz with
the Japanese VLBI Network (JVN) 2.6 days after the first rise. The VLBI image
exhibits a single core with a size of <8 mas (80 AU). The observed image was
almost stable, although the core showed rapid variation in flux density. No jet
structure was seen at a sensitivity of K.Comment: 17 pages,6 figures; accepted by PAS
- …