404 research outputs found

    Regulatory functions of hapten-reactive helper and suppressor T lymphocytes. I. Detection and characterization of hapten-reactive suppressor T-cell activity in mice immunized with hapten-isologous protein conjugate

    Get PDF
    Helper and suppressor T-cell activities were detected simultaneously in the spleen cells of mice immunized with para-azobenzoate (PAB)-mouse gammaglobulin (MGG). Dinitrophenyl (DNP)-specific B cells were raised by immunization with DNP-keyhole limpet hemocyanin (KLH) and used as the indicator B-cell population. The helper and suppressor T-cell activities were determined after adoptively transferring spleen cells from PAB-MGG- primed donors and DNP-KLH-primed donors into X-irradiated recipients. Stimulation of these recipients with DNP-MGG-PAB detected helper T-cell activity, which was measured in terms of increased anti-DNP antibody responses of DNP-KLH-primed cells over these responses in the presence of unprimed cells. On the other hand, when DNP-KLH-primed cells were stimulated with DNP-KLH-PAB in the presence of PAB-MGG-primed cells, anti-DNP antibody responses were substantially lower than in unprimed normal cells. This suppressor cell population was (a) hapten-reactive, (b) present in B-cell-depleted spleen cells, (c) Thy-1 positive, (d) detectable earlier than the helper T-cell activities after priming (e) more radiosensitive than helper cells, and (f) found in the spleen but not the lymph nodes in contrast to helper T cells. These data indicate that these suppressor T cells are distinct from the helper T cells. PAB-reactive T cells clearly suppressed the antibody response by inhibiting KLH-reactive helper T-cell functions. The hapten-reactive T-lymphocyte system described here should be useful for analyzing and manipulating the immune response and for studying regulatory interactions of helper and suppressor T cells in the induction of antibody responses

    Osteoblastic lesion screening with an advanced post-processing package enabling in-plane rib reading in CT-images

    Get PDF
    Background To evaluate screening and diagnostic accuracy for the detection of osteoblastic rib lesions using an advanced post-processing package enabling in-plane rib reading in CT-images. Methods We retrospectively assessed the CT-data of 60 consecutive prostate cancer patients by applying dedicated software enabling in-plane rib reading. Reading the conventional multiplanar reconstructions was considered to be the reference standard. To simulate clinical practice, the reader was given 10 s to screen for sclerotic rib lesions in each patient applying both approaches. Afterwards, every rib was evaluated individually with both approaches without a time limit. Sensitivities, specificities, positive/negative predictive values and the time needed for detection were calculated depending on the lesion’s size (largest diameter  10 mm). Results In 53 of 60 patients, all ribs were properly displayed in plane, in five patients ribs were partially displayed correctly, and in two patients none of the ribs were displayed correctly. During the 10-s screening approach all patients with sclerotic rib lesions were correctly identified reading the in-plane images (including the patients without a correct rib segmentation), whereas 14 of 23 patients were correctly identified reading conventional multiplanar images. Overall screening sensitivity, specificity, and positive/negative predictive values were 100/27.0/46.0/100 %, respectively, for in-plane reading and 60.9/100/100/80.4 %, respectively, for multiplanar reading. Overall diagnostic (no time limit) sensitivity, specificity, and positive/negative predictive values of in-plane reading were 97.8/92.8/74.6/99.5 %, respectively. False positive results predominantly occurred for lesions <5 mm in size. Conclusions In-plane reading of the ribs allows reliable detection of osteoblastic lesions for screening purposes. The limited specificity results from false positives predominantly occurring for small lesions

    NIRS Measurements with Elite Speed Skaters: Comparison Between the Ice Rink and the Laboratory

    Get PDF
    Wearable, wireless near-infrared (NIR) spectrometers were used to compare changes in on-ice short-track skating race simulations over 1,500 m with a 3-min cycle ergometry test at constant power output (400 W). The subjects were six male elite short-track speed skaters. Both protocols elicited a rapid desaturation (∆TSI%) in the muscle during early stages (initial 20 s); however, asymmetry between right and left legs was seen in ΔTSI% for the skating protocol, but not for cycling. Individual differences between skaters were present in both protocols. Notably, one individual who showed a relatively small TSI% change (-10.7%, group mean = -26.1%) showed a similarly small change during the cycling protocol (-5.8%, group mean = -14.3%). We conclude that NIRS-detected leg asymmetry is due to the specific demands of short-track speed skating. However, heterogeneity between individuals is not specific to the mode of exercise. Whether this is a result of genuine differences in physiology or a reflection of differences in the optical properties of the leg remains to be determined

    Muscle Oxygen Changes following Sprint Interval Cycling Training in Elite Field Hockey Players

    Get PDF
    This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37± 0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFTperformance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59±0.91 to -12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44 ±26.48ÎŒM.cm); and ΔHbO2+ MbO2 (-74.29±13.82 to -109.36±22.61ÎŒM.cm). No significant differences were seen in ΔtHb (-45.81±15.23 to -42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes
    • 

    corecore