17 research outputs found

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Static avalanches and Giant stress fluctuations in Silos

    Full text link
    We propose a simple model for arch formation in silos. We show that small pertubations (such as the thermal expansion of the beads) may lead to giant stress fluctuations on the bottom plate of the silo. The relative amplitude Δ\Delta of these fluctuations are found to be power-law distributed, as Δτ\Delta^{-\tau}, τ1.0\tau \simeq 1.0. These fluctuations are related to large scale `static avalanches', which correspond to long-range redistributions of stress paths within the silo.Comment: 10 pages, 4 figures.p

    Super-roughening versus intrinsic anomalous scaling of surfaces

    Get PDF
    In this paper we study kinetically rough surfaces which display anomalous scaling in their local properties such as roughness, or height-height correlation function. By studying the power spectrum of the surface and its relation to the height-height correlation, we distinguish two independent causes for anomalous scaling. One is super-roughening (global roughness exponent larger than or equal to one), even if the spectrum behaves non anomalously. Another cause is what we term an intrinsically anomalous spectrum, in whose scaling an independent exponent exists, which induces different scaling properties for small and large length scales (that is, the surface is not self-affine). In this case, the surface does not need to be super-rough in order to display anomalous scaling. In both cases, we show how to extract the independent exponents and scaling relations from the correlation functions, and we illustrate our analysis with two exactly solvable examples. One is the simplest linear equation for molecular beam epitaxy , well known to display anomalous scaling due to super-roughening. The second example is a random diffusion equation, which features anomalous scaling independent of the value of the global roughness exponent below or above one.Comment: 9 pages, 6 figures, Revtex (uses epsfig), Phys. Rev. E, submitte

    Velocity fluctuations in forced Burgers turbulence

    Full text link
    We propose a simple method to compute the velocity difference statistics in forced Burgers turbulence in any dimension. Within a reasonnable assumption concerning the nucleation and coalescence of shocks, we find in particular that the `left' tail of the distribution decays as an inverse square power, which is compatible with numerical data. Our results are compared to those of various recent approaches: instantons, operator product expansion, replicas.Comment: 10 pages latex, one postcript figur

    Singularities and Avalanches in Interface Growth with Quenched Disorder

    Full text link
    A simple model for an interface moving in a disordered medium is presented. The model exhibits a transition between the two universality classes of interface growth phenomena. Using this model, it is shown that the application of constraints to the local slopes of the interface produces avalanches of growth, that become relevant in the vicinity of the depinning transition. The study of these avalanches reveals a singular behavior that explains a recently observed singularity in the equation of motion of the interface.Comment: 4 pages. REVTEX. 4 figs available on request from [email protected]

    Derivation of continuum stochastic equations for discrete growth models

    Full text link
    We present a formalism to derive the stochastic differential equations (SDEs) for several solid-on-solid growth models. Our formalism begins with a mapping of the microscopic dynamics of growth models onto the particle systems with reactions and diffusion. We then write the master equations for these corresponding particle systems and find the SDEs for the particle densities. Finally, by connecting the particle densities with the growth heights, we derive the SDEs for the height variables. Applying this formalism to discrete growth models, we find the Edwards-Wilkinson equation for the symmetric body-centered solid-on-solid (BCSOS) model, the Kardar-Parisi-Zhang equation for the asymmetric BCSOS model and the generalized restricted solid-on-solid (RSOS) model, and the Villain--Lai--Das Sarma equation for the conserved RSOS model. In addition to the consistent forms of equations for growth models, we also obtain the coefficients associated with the SDEs.Comment: 5 pages, no figur

    Noisy Kuramoto-Sivashinsky equation for an erosion model

    Get PDF
    We derive the continuum equation for a discrete model for ion sputtering. We follow an approach based on the master equation, and discuss how it can be truncated to a Fokker-Planck equation and mapped to a discrete Langevin equation. By taking the continuum limit, we arrive at the Kuramoto-Sivashinsky equation with a stochastic noise term.Comment: latex (w/ multicol.sty), 4 pages; to appear in Physical Review E (Oct 1996

    Stochastic Model for Surface Erosion Via Ion-Sputtering: Dynamical Evolution from Ripple Morphology to Rough Morphology

    Get PDF
    Surfaces eroded by ion-sputtering are sometimes observed to develop morphologies which are either ripple (periodic), or rough (non-periodic). We introduce a discrete stochastic model that allows us to interpret these experimental observations within a unified framework. We find that a periodic ripple morphology characterizes the initial stages of the evolution, whereas the surface displays self-affine scaling in the later time regime. Further, we argue that the stochastic continuum equation describing the surface height is a noisy version of the Kuramoto-Sivashinsky equation.Comment: 4 pages, 7 postscript figs., Revtex, to appear in Phys. Rev. Let

    Flame front propagation I: The Geometry of Developing Flame Fronts: Analysis with Pole Decomposition

    Full text link
    The roughening of expanding flame fronts by the accretion of cusp-like singularities is a fascinating example of the interplay between instability, noise and nonlinear dynamics that is reminiscent of self-fractalization in Laplacian growth patterns. The nonlinear integro-differential equation that describes the dynamics of expanding flame fronts is amenable to analytic investigations using pole decomposition. This powerful technique allows the development of a satisfactory understanding of the qualitative and some quantitative aspects of the complex geometry that develops in expanding flame fronts.Comment: 4 pages, 2 figure

    Renormalization Group Analysis of a Noisy Kuramoto-Sivashinsky Equation

    Get PDF
    We have analyzed the Kuramoto-Sivashinsky equation with a stochastic noise term through a dynamic renormalization group calculation. For a system in which the lattice spacing is smaller than the typical wavelength of the linear instability occurring in the system, the large-distance and long-time behavior of this equation is the same as for the Kardar-Parisi-Zhang equation in one and two spatial dimensions. For the d=2d=2 case the agreement is only qualitative. On the other hand, when coarse-graining on larger scales the asymptotic flow depends on the initial values of the parameters.Comment: 8 pages, 5 figures, revte
    corecore