5,869 research outputs found

    Partial Disorder and Metal-Insulator Transition in the Periodic Anderson Model on a Triangular Lattice

    Full text link
    Ground state of the periodic Anderson model on a triangular lattice is systematically investigated by the mean-field approximation. We found that the model exhibits two different types of partially disordered states: one is at half filling and the other is at other commensurate fillings. In the latter case, the kinetic energy is lowered by forming an extensive network involving both magnetic and nonmagnetic sites, in sharp contrast to the former case in which the nonmagnetic sites are rather isolated. This spatially extended nature of nonmagnetic sites yields a metallic partially-disordered state by hole doping. We discuss the mechanism of the metal-insulator transition by the change of electronic structure.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    On nucleon exchange mechanism in heavy-ion collisions at near-barrier energies

    Full text link
    Nucleon drift and diffusion mechanisms in central collisions of asymmetric heavy-ions at near-barrier energies are investigated in the framework of a stochastic mean-field approach. Expressions for diffusion and drift coefficients for nucleon transfer deduced from the stochastic mean-field approach in the semiclassical approximation have similar forms familiar from the phenomenological nucleon exchange model. The variance of fragment mass distribution agrees with the empirical formula σAA2(t)=Nexc(t)\sigma^2_{AA}(t)= N_{\rm exc}(t). The comparison with the time-dependent Hartree-Fock calculations shows that, below barrier energies, the drift coefficient in the semiclassical approximation underestimates the mean number of nucleon transfer obtained in the quantal framework. Motion of the window in the dinuclear system has a significant effect on the nucleon transfer in asymmetric collisions.Comment: 10 pages, 10 figures, submitted for publicatio

    Fluctuation and dissipation dynamics in fusion reactions from stochastic mean-field approach

    Full text link
    By projecting the stochastic mean-field dynamics on a suitable collective path during the entrance channel of heavy-ion collisions, expressions for transport coefficients associated with relative distance are extracted. These transport coefficients, which have similar forms to those familiar from nucleon exchange model, are evaluated by carrying out TDHF simulations. The calculations provide an accurate description of the magnitude and form factor of transport coefficients associated with one-body dissipation and fluctuation mechanism.Comment: 9 pages, 5 figure

    Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20

    Full text link
    We report on a ternary intermetallic compound, "YMn2Zn20", comprising a pyrochlore lattice made of Mn atoms. A series of In-doped single crystals undergo no magnetic long-range order down to 0.4 K, in spite of the fact that the Mn atom carries a local magnetic moment at high temperatures, showing Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions at approximately 10 K due to a disorder arising from the substitution, while, with decreasing In content, the spin-glass transition temperature is reduced to 1 K. Then, heat capacity divided by temperature approaches a large value of 280 mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction electrons. This heavy-fermion-like behavior is not induced by the Kondo effect as in ordinary f-electron compounds, but by an alternative mechanism related to the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and LiV2O4, which may allow spin entropy to survive down to low temperatures and to couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres

    Enhanced Local Moment Formation in a Chiral Luttinger Liquid

    Full text link
    We derive here a stability condition for a local moment in the presence of an interacting sea of conduction electrons. The conduction electrons are modeled as a Luttinger liquid in which chirality and spin are coupled. We show that an Anderson-U defect in such an interacting system can be transformed onto a nearly-Fermi liquid problem. We find that correlations among the conduction electrons stabilize the local moment phase. A Schrieffer-Wolff transformation is then performed which results in an anisotropic exchange interaction indicative of the Kondo effect in a Luttinger liquid. The ground-state properties of this model are then equivalent to those of the Kondo model in a Luttinger liquid.Comment: 11 pages, no figure

    Effects of Single-site Anisotropy on Mixed Diamond Chains with Spins 1 and 1/2

    Full text link
    Effects of single-site anisotropy on mixed diamond chains with spins 1 and 1/2 are investigated in the ground states and at finite temperatures. There are phases where the ground state is a spin cluster solid, i.e., an array of uncorrelated spin-1 clusters separated by singlet dimers. The ground state is nonmagnetic for the easy-plane anisotropy, while it is paramagnetic for the easy-axis anisotropy. Also, there are the N\'eel, Haldane, and large-DD phases, where the ground state is a single spin cluster of infinite size and the system is equivalent to the spin-1 Heisenberg chain with alternating anisotropy. The longitudinal and transverse susceptibilities and entropy are calculated at finite temperatures in the spin-cluster-solid phases. Their low-temperature behaviors are sensitive to anisotropy.Comment: 8 pages, 4 figure

    Slave-Boson Functional-Integral Approach to the Hubbard Model with Orbital Degeneracy

    Full text link
    A slave-boson functional-integral method has been developed for the Hubbard model with arbitrary, orbital degeneracy DD. Its saddle-point mean-field theory is equivalent to the Gutzwiller approximation, as in the case of single-band Hubbard model. Our theory is applied to the doubly degenerate (D=2D = 2) model, and numerical calculations have been performed for this model in the paramagnetic states. The effect of the exchange interaction on the metal-insulator (MI) transition is discussed. The critical interaction for the MI transition is analytically calculated as functions of orbital degeneracy and electron occupancy.Comment: Latex 20 pages, 9 figures available on request to [email protected] Note: published in J. Physical Society of Japan with some minor modification

    Fermi Surface of The One-dimensional Kondo Lattice Model

    Full text link
    We show a strong indication of the existence of a large Fermi surface in the one-dimensional Kondo lattice model. The characteristic wave vector of the model is found to be kF=(1+ρ)π/2k_F=(1+\rho )\pi /2, ρ\rho being the density of the conduction electrons. This result is at first obtained for a variant of the model that includes an antiferromagnetic Heisenberg interaction JHJ_H between the local moments. It is then directly observed in the conventional Kondo lattice (JH=0)(J_H=0), in the narrow range of Kondo couplings where the long distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure

    Universality in Heavy Fermions Revisited

    Full text link
    A previous scaling analysis of pressure experiments in heavy fermion is reviewed and enlarged. We show that the critical exponents obtained from this analysis indicate that a one-parameter scaling describes these experiments. We obtain explicitly the enhancemente factors showing that these systems are indeed near criticality and that the scaling approach is appropriate. The physics responsible for the one-parameter scaling and breakdown of hyperscaling is clarified. We discuss a microsocopic theory that is in agreement with the experiments. The scaling theory is generalized for the case the shift and crossover exponents are different. The exponents governing the physical behavior along the non-Fermi liquid trajectory are obtained for this case.Comment: 7 pages, Latex, 3 Postscript figures, to be published in Physical Review
    • 

    corecore