1,329 research outputs found

    Pathwise Sensitivity Analysis in Transient Regimes

    Full text link
    The instantaneous relative entropy (IRE) and the corresponding instanta- neous Fisher information matrix (IFIM) for transient stochastic processes are pre- sented in this paper. These novel tools for sensitivity analysis of stochastic models serve as an extension of the well known relative entropy rate (RER) and the corre- sponding Fisher information matrix (FIM) that apply to stationary processes. Three cases are studied here, discrete-time Markov chains, continuous-time Markov chains and stochastic differential equations. A biological reaction network is presented as a demonstration numerical example

    The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices

    Get PDF
    The radial distributions of the Mg2 and Fe5270 Lick spectral indices have been measured to large radial distances on the disks of NGC 4303 and NGC 4535 using an imaging technique based on interference filters. These data, added to those of NGC 4321 previously published in Paper I of this series are used to constraint chemical (multiphase) evolutionary models for these galaxies. Because the integrated light of a stellar disk is a time average over the history of the galaxy weighted by the star formation rate, these constraints complement the information on chemical gradients provided by the study of HII regions which, by themselves, can only provide the alpha-elements abundance accumulate over the life of the galaxy. The agreement between the observations and the model predictions shown here lends confidence to the models which are then used to describe the time evolution of galaxy parameters such as star formation rates, chemical gradients, and gradients in the mean age of the stellar population.Comment: to be published in Astrophysical Journa

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    Automatically refining partial specifications for Program Verification

    Get PDF
    10.1007/978-3-642-21437-0_28Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6664 LNCS369-38

    Annotation-Based Static Analysis for Personal Data Protection

    Full text link
    This paper elaborates the use of static source code analysis in the context of data protection. The topic is important for software engineering in order for software developers to improve the protection of personal data during software development. To this end, the paper proposes a design of annotating classes and functions that process personal data. The design serves two primary purposes: on one hand, it provides means for software developers to document their intent; on the other hand, it furnishes tools for automatic detection of potential violations. This dual rationale facilitates compliance with the General Data Protection Regulation (GDPR) and other emerging data protection and privacy regulations. In addition to a brief review of the state-of-the-art of static analysis in the data protection context and the design of the proposed analysis method, a concrete tool is presented to demonstrate a practical implementation for the Java programming language

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than 4×1054\sim4\times 10^{54} erg for a E2E^{-2} spectrum

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
    corecore