6,296 research outputs found

    Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    Full text link
    We report 209Bi NMR and NQR measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The 209Bi nuclear spin-lattice relaxation rate (T11T_1^{-1}) shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects

    Full text link
    We investigated a switchable ferroelectric diode effect and its physical mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and disturbs carrier injection. We therefore used an electrical training process to obtain ferroelectric control of the diode polarity where, by changing the polarization direction using an external bias, we could switch the transport characteristics between forward and reverse diodes. Our system is characterized with a rectangular polarization hysteresis loop, with which we confirmed that the diode polarity switching occurred at the ferroelectric coercive voltage. Moreover, we observed a simultaneous switching of the diode polarity and the associated photovoltaic response dependent on the ferroelectric domain configurations. Our detailed study suggests that the polarization charge can affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in a modulation of the interfacial carrier injection. The amount of polarization-modulated carrier injection can affect the transition voltage value at which a space-charge-limited bulk current-voltage (J-V) behavior is changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2). This combination of bulk conduction and polarization-modulated carrier injection explains the detailed physical mechanism underlying the switchable diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.

    Antiferromagnetic Order and Superconductivity in Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with Electron Doping: 75As-NMR Study

    Full text link
    We report an 75As-NMR study on iron (Fe)-based superconductors with thick perovskitetype blocking layers Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with x=0 and 0.2. We have found that antiferromagnetic (AFM) order takes place when x=0, and superconductivity (SC) emerges below Tc=36 K when x=0.2. These results reveal that the Fe-pnictides with thick perovskitetype blocks also undergo an evolution from the AFM order to the SC by doping electron carriers into FeAs planes through the chemical substitution of Ti+4 ions for Mg+2 ions, analogous to the F-substitution in LaFeAsO compound. The reason why the Tc=36 K when x=0.2 being higher than the optimally electron-doped LaFeAsO with Tc=27 K relates to the fact that the local tetrahedron structure of FeAs4 is optimized for the onset of SC.Comment: 4 pages, 3 figures, 1 tabl

    Collective modes and sound propagation in a p-wave superconductor: Sr2_2RuO4_4

    Full text link
    There are five distinct collective modes in the recently discovered p-wave superconductor Sr2_2RuO4_4; phase and amplitude modes of the order parameter, clapping mode (real and imaginary), and spin wave. The first two modes also exist in the ordinary s-wave superconductors, while the clapping mode with the energy 2Δ(T)\sqrt{2} \Delta(T) is unique to Sr2_2RuO4_4 and couples to the sound wave. Here we report a theoretical study of the sound propagation in a two dimensional p-wave superconductor. We identified the clapping mode and study its effects on the longitudinal and transverse sound velocities in the superconducting state. In contrast to the case of 3^3He, there is no resonance absorption associated with the collective mode, since in metals ω/(vFq)1\omega/(v_F |{\bf q}|) \ll 1, where vFv_F is the Fermi velocity, {\bf q} is the wave vector, and ω\omega is the frequency of the sound wave. However, the velocity change in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the attenuation coefficient near TcT_c in the diffusive limit are calculated and compared with the existing experimental data wherever it is possible. We also present the results for the attenuation coefficients in both of the collisionless and diffusive limits at finite temperatures.Comment: RevTex, 12 pages, 2 figures, Replaced by the published versio

    Color-octet mechanism and J/psi polarization at LEP

    Full text link
    Polarized heavy quarkonium productions in Z0Z^0 decays are considered. We find that polarizations of the produced quarkonia are independent of that of the parent Z^0 provided that one considers the energy distribution or the total production rate. Produced J/psi's via the color-octet and the color- singlet mechanisms are expected to be 19% and 29% longitudinally polarized, respectively. The energy dependence of eta_{1,8}(x)=\frac{dGamma_{1,8}^L}{dx} /\frac{dGamma_{1,8}}{d x} is very sensitive to the production mechanism, and therefore the measurement of \eta(x)_exp will be an independent probe of the color-octet mechanism.Comment: 15 pages, minor changes, version to be published in Phys. Rev.

    Superconductivity and the Effects of Pressure and Structure in Single Crystalline SrNi2_2P2_2

    Full text link
    Heat capacity, magnetic susceptibility, NMR, and resistivity of SrNi2P2 single crystals are presented, illustrating a purely structural transition at 325 K with no magnetism. Bulk superconductivity is found at 1.4 K. The magnitude of the transition temperature T_c, fits to the heat capacity data, the small upper critical field Hc2H_{c2} = 390 Oe, and Ginzburg-Landau parameter κ\kappa = 2.1 suggests a conventional fully gapped superconductor. With applied pressure a second structural phase transition occurs which results in an 8% reduction in the c/a ratio of lattice parameters. We find that superconductivity persists into this high pressure phase, although the transition temperature is monotonically suppressed with increasing pressure. Comparison of these Ni-P data as well as layered Fe-As and Ni-As superconductor indicates that reduced dimensionality can be a mechanism for increasing the transition temperature.Comment: 6 pages, 7 figures, New Title, minor changes, published in PRB as an editor's suggestio

    Comparative study of electroabsorption in InGaN/GaN quantum zigzag heterostructures with polarization-induced electric fields

    Get PDF
    Cataloged from PDF version of article.We present a comparative study on InGaN/GaN quantum zigzag structures embedded in p-i-n diode architecture that exhibit blue-shifting electroabsorption in the blue when an electric field is externally applied to compensate for the polarization-induced electric field across the wells. With the polarization breaking their symmetry, the same InGaN/GaN quantum structures redshift their absorption edge when the external field is applied in the same direction as the well polarization. Both computationally and experimentally, we investigate the effects of polarization on electroabsorption by varying compositional content and structural parameters and demonstrate that electroabsorption grows stronger with weaker polarization in these multiple quantum well modulators. (c) 2008 American Institute of Physics

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page
    corecore