16 research outputs found

    Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno's model

    No full text
    A numerical study of the steady free convection flow in shallow and slender porous cavities filled by a nanofluid is presented. The nanofluid model takes into account the Brownian diffusion and the thermophoresis effects. The governing dimensional partial differential equations are transformed into a dimensionless form before being solved numerically using a finite difference method. Effort has been focused on the effects of four types of influential factors such as the aspect ratio, the Rayleigh and Lewis numbers, and the buoyancy-ratio parameter on the fluid flow and heat transfer characteristics.</jats:p

    Natural convection in a cubical porous cavity saturated with nanofluid using Tiwari and Das' nanofluid model

    No full text
    Natural convection in a cubical differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless vector potential functions and temperature taking into account the Darcy−Boussinesq approximation. The Tiwari and Das' nanofluid model with new, more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method with nonuniform mesh. The results have been presented in terms of the three-dimensional velocity and temperature fields, streamlines, and isotherms at middle cross section, average and local Nusselt numbers at hot wall for a wide range of key parameters

    Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das' nanofluid model

    No full text
    Free convection in a square differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation. The Tiwari and Das’ nanofluid model with new more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method. The developed algorithm has been validated by direct comparisons with previously published papers and the results have been found to be in good agreement. The results have been presented in terms of the streamlines, isotherms, local, and average Nusselt numbers at left vertical wall at a wide range of key parameters

    Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das' nanofluid model

    No full text
    Free convection in a square differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation. The Tiwari and Das’ nanofluid model with new more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method. The developed algorithm has been validated by direct comparisons with previously published papers and the results have been found to be in good agreement. The results have been presented in terms of the streamlines, isotherms, local, and average Nusselt numbers at left vertical wall at a wide range of key parameters

    Natural convection in a cubical porous cavity saturated with nanofluid using Tiwari and Das' nanofluid model

    No full text
    Natural convection in a cubical differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless vector potential functions and temperature taking into account the Darcy−Boussinesq approximation. The Tiwari and Das' nanofluid model with new, more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method with nonuniform mesh. The results have been presented in terms of the three-dimensional velocity and temperature fields, streamlines, and isotherms at middle cross section, average and local Nusselt numbers at hot wall for a wide range of key parameters
    corecore