720 research outputs found

    Analytical study of non Gaussian fluctuations in a stochastic scheme of autocatalytic reactions

    Full text link
    A stochastic model of autocatalytic chemical reactions is studied both numerically and analytically. The van Kampen perturbative scheme is implemented, beyond the second order approximation, so to capture the non Gaussianity traits as displayed by the simulations. The method is targeted to the characterization of the third moments of the distribution of fluctuations, originating from a system of four populations in mutual interaction. The theory predictions agree well with the simulations, pointing to the validity of the van Kampen expansion beyond the conventional Gaussian solution.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Steady-state fluctuations of a genetic feedback loop:an exact solution

    Get PDF
    Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution (Hornos et al, Phys. Rev. E {\bf 72}, 051907 (2005) and subsequent studies). We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.Comment: 31 pages, 3 figures. Accepted for publication in the Journal of Chemical Physics (2012

    Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    Full text link
    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtolitres. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small sub-cellular compartment. This is achieved by applying a mesoscopic version of the quasi-steady state assumption to the exact Fokker-Planck equation associated with the Poisson Representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing sub-cellular volume, decreasing Michaelis-Menten constants and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.Comment: 13 pages, 4 figures; published in The Journal of Chemical Physic

    Mathematical Model of the Impact of a Nonantibiotic Treatment for Clostridium difficile on the Endemic Prevalence of Vancomycin-Resistant Enterococci in a Hospital Setting

    Get PDF
    Introduction. Clostridium difficile-associated disease (CDAD) is treated using antibiotics, which often leads to the emergence of antibiotic-resistant bacteria such as vancomycin-resistant enterococci (VRE). This study estimated the impact of a non antibiotic treatment for CDAD on VRE prevalence. Methods. A previously published model describing the impact of in-hospital antibiotic use on VRE prevalence was adapted to include CDAD treatment. Simulations compared the prevalence of VRE when nonantibiotic versus antibiotic therapy was used. Results. Nonantibiotic treatment in 50% of CDAD patients resulted in an 18% relative reduction in the prevalence of VRE colonization compared with antibiotic use only. Sensitivity analysis found the model to be most sensitive to rates of antibiotic initiation and discontinuation, prevalence of VRE in admitted patients, length of stay of colonized patients, probability of CDAD acquisition, and hand-washing compliance. Conclusion. Nonantibiotic treatment of patients hospitalized with CDAD may significantly reduce the incidence of VRE colonization

    Accurate discretization of advection-diffusion equations

    Full text link
    We present an exact mathematical transformation which converts a wide class of advection-diffusion equations into a form allowing simple and direct spatial discretization in all dimensions, and thus the construction of accurate and more efficient numerical algorithms. These discretized forms can also be viewed as master equations which provides an alternative mesoscopic interpretation of advection-diffusion processes in terms of diffusion with spatially varying hopping rates

    How accurate are the non-linear chemical Fokker-Planck and chemical Langevin equations?

    Full text link
    The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are commonly used approximations of the chemical master equation. These equations are derived from an uncontrolled, second-order truncation of the Kramers-Moyal expansion of the chemical master equation and hence their accuracy remains to be clarified. We use the system-size expansion to show that chemical Fokker-Planck estimates of the mean concentrations and of the variance of the concentration fluctuations about the mean are accurate to order Ω3/2\Omega^{-3/2} for reaction systems which do not obey detailed balance and at least accurate to order Ω2\Omega^{-2} for systems obeying detailed balance, where Ω\Omega is the characteristic size of the system. Hence the chemical Fokker-Planck equation turns out to be more accurate than the linear-noise approximation of the chemical master equation (the linear Fokker-Planck equation) which leads to mean concentration estimates accurate to order Ω1/2\Omega^{-1/2} and variance estimates accurate to order Ω3/2\Omega^{-3/2}. This higher accuracy is particularly conspicuous for chemical systems realized in small volumes such as biochemical reactions inside cells. A formula is also obtained for the approximate size of the relative errors in the concentration and variance predictions of the chemical Fokker-Planck equation, where the relative error is defined as the difference between the predictions of the chemical Fokker-Planck equation and the master equation divided by the prediction of the master equation. For dimerization and enzyme-catalyzed reactions, the errors are typically less than few percent even when the steady-state is characterized by merely few tens of molecules.Comment: 39 pages, 3 figures, accepted for publication in J. Chem. Phy

    The use of computer simulation modeling to estimate complications in patients with type 2 diabetes mellitus : comparative validation of the cornerstone diabetes simulation model

    Get PDF
    Objective The objective of this study was to assess the validity of the Cornerstone Diabetes Simulation (CDS), a Microsoft Excel(R)-based patient-level simulation for type 2 diabetes mellitus based on risk equations from the revised United Kingdom Prospective Diabetes Study Outcomes Model (UKPDS-OM2, also known as UKPDS 82). Methods Three levels of validation were conducted. Internal validation was assessed through independent review and model stress-testing. External validation was addressed by populating the CDS with baseline characteristics and treatment effects from three major diabetes clinical trials used in the Fifth Mount Hood Diabetes Challenge (MH5) for computer simulation models. Cross-validation of predicted outcomes was tested versus eight models that participated in the MH5. Simulated results were compared with observed clinical outcomes via the coefficient of determination (R-2) for both the absolute risk of each clinical outcome and the difference in absolute risk between control and intervention arm in each trial. We ensured transparency of all model inputs and assumptions in reporting. Results The CDS could be used to predict 18 of 39 single and composite endpoints across the three trials. The model obtained an R-2 of 0.637 for predicted versus observed absolute risks, and an R-2 of 0.442 for predicted versus observed risk differences between control and intervention. Among the other eight models, only one obtained a higher R-2 value under both definitions, albeit based on only four predicted endpoints. Conclusions The CDS provides good predictions of diabetes-related complications when compared to observed trial outcomes and previously validated models. The model has value as a validated tool in cost-effectiveness evaluations

    Directed cell migration in the presence of obstacles

    Get PDF
    BACKGROUND: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. RESULTS: We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. CONCLUSION: Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles

    Effects of bursty protein production on the noisy oscillatory properties of downstream pathways

    Get PDF
    Experiments show that proteins are translated in sharp bursts; similar bursty phenomena have been observed for protein import into compartments. Here we investigate the effect of burstiness in protein expression and import on the stochastic properties of downstream pathways. We consider two identical pathways with equal mean input rates, except in one pathway proteins are input one at a time and in the other proteins are input in bursts. Deterministically the dynamics of these two pathways are indistinguishable. However the stochastic behavior falls in three categories: (i) both pathways display or do not display noise-induced oscillations; (ii) the non-bursty input pathway displays noise-induced oscillations whereas the bursty one does not; (iii) the reverse of (ii). We derive necessary conditions for these three cases to classify systems involving autocatalysis, trimerization and genetic feedback loops. Our results suggest that single cell rhythms can be controlled by regulation of burstiness in protein production

    Three Styles in the Study of Violence

    Full text link
    This is a postprint (accepted manuscript) version of the article published in Reviews in Anthropology 37:1-19. The final version of the article can be found at http://dx.doi.org/10.1080/00938150701829525 (login required to access content). The version made available in Digital Common was supplied by the author.Accepted Manuscripttru
    corecore