1,641 research outputs found
The population of hot subdwarf stars studied with Gaia II. The Gaia DR2 catalogue of hot subluminous stars
Based on data from the ESA Gaia Data Release 2 (DR2) and several
ground-based, multi-band photometry surveys we compiled an all-sky catalogue of
hot subluminous star candidates selected in Gaia DR2 by means of
colour, absolute magnitude and reduced proper motion cuts. We expect the
majority of the candidates to be hot subdwarf stars of spectral type B and O,
followed by blue horizontal branch stars of late B-type (HBB), hot post-AGB
stars, and central stars of planetary nebulae. The contamination by cooler
stars should be about . The catalogue is magnitude limited to Gaia
and covers the whole sky. Except within the Galactic plane
and LMC/SMC regions, we expect the catalogue to be almost complete up to about
. The main purpose of this catalogue is to serve as input
target list for the large-scale photometric and spectroscopic surveys which are
ongoing or scheduled to start in the coming years. In the long run, securing a
statistically significant sample of spectroscopically confirmed hot subluminous
stars is key to advance towards a more detailed understanding of the latest
stages of stellar evolution for single and binary stars.Comment: 13 pages, A&A, accepte
Selecting asteroids for a targeted spectroscopic survey
Asteroid spectroscopy reflects surface mineralogy. There are few thousand
asteroids whose surfaces have been observed spectrally. Determining the surface
properties of those objects is important for many practical and scientific
applications, such as for example developing impact deflection strategies or
studying history and evolution of the Solar System and planet formation.
The aim of this study is to develop a pre-selection method that can be
utilized in searching for asteroids of any taxonomic complex. The method could
then be utilized im multiple applications such as searching for the missing
V-types or looking for primitive asteroids.
We used the Bayes Naive Classifier combined with observations obtained in the
course of the Sloan Digital Sky Survey and the Wide-field Infrared Survey
Explorer surveys as well as a database of asteroid phase curves for asteroids
with known taxonomic type. Using the new classification method we have selected
a number of possible V-type candidates. Some of the candidates were than
spectrally observed at the Nordic Optical Telescope and South African Large
Telescope.
We have developed and tested the new pre-selection method. We found three
asteroids in the mid/outer Main Belt that are likely of differentiated type.
Near-Infrared are still required to confirm this discovery. Similarly to other
studies we found that V-type candidates cluster around the Vesta family and are
rare in the mid/oter Main Belt.
The new method shows that even largely explored large databases combined
together could still be further exploited in for example solving the missing
dunite problem.Comment: accepted to A
From non-Hermitian linear response to dynamical correlations and fluctuation-dissipation relations in quantum many-body systems
Quantum many-body systems are characterized by their correlations. While
equal-time correlators and unequal-time commutators between operators are
standard observables, the direct access to unequal-time anti-commutators poses
a formidable experimental challenge. Here, we propose a general technique for
measuring unequal-time anti-commutators using the linear response of a system
to a non-Hermitian perturbation. We illustrate the protocol at the example of a
Bose-Hubbard model, where the approach to thermal equilibrium in a closed
quantum system can be tracked by measuring both sides of the
fluctuation-dissipation relation. We relate the scheme to the quantum Zeno
effect and weak measurements, and illustrate possible implementations at the
example of a cold-atom system. Our proposal provides a way of characterizing
dynamical correlations in quantum many-body systems with potential applications
in understanding strongly correlated matter as well as for novel quantum
technologies.Comment: 17 pages, 5 figure
Candidate hypervelocity stars of spectral type G and K revisited
Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy.
When they were first discovered in 2005, dynamical ejection from the
supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as
their origin. The two dozen HVSs known today are young massive B stars, mostly
of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in
the Segue G and K dwarf sample, but none of them originates from the GC. We
embarked on a kinematic analysis of the Segue HVS candidate sample using the
full 6D phase space information based on new proper motion measurements. Their
orbital properties can then be derived by tracing back their trajectories in
different mass models of our Galaxy. We present the results for 14 candidate
HVSs, for which proper motion measurements were possible. Significantly lower
proper motions than found in the previous study were derived. Considering three
different Galactic mass models we find that all stars are bound to the Galaxy.
We confirm that the stars do not originate from the GC. The distribution of
their proper motions and radial velocities is consistent with predictions for
runaway stars ejected from the Galactic disk by the binary supernova mechanism.
However, their kinematics are also consistent with old disk membership.
Moreover, most stars have rather low metallicities and strong -element
enrichment as typical for thick disk and halo stars, whereas the metallicity of
the three most metal-rich stars could possibly indicate that they are runaway
stars from the thin disk. One star shows halo kinematics.Comment: A&A letter accepte
Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions
Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than . Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds , four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion. The sample also contains a candidate post-RGB star, which rotates fast despite its long orbital period. The post-RGB stars are expected to spin-up caused by their ongoing contraction. The age of the sdB is another important factor. If the EHB star is too young, the synchronisation process might not be finished yet. Estimating the ages of the target stars from their positions on the EHB band, we found PG 2345+318, which is known not to be synchronised, to lie near the zero-age extreme horizontal branch as are the massive candidates PG 1232-136, PG 1432+159 and PG 1101+249. These star may possibly be too young to have reached synchronisation. The derived large fraction of putative massive sdB binary systems in low inclination orbits is inconsistent with theoretical predictions. Even if we dismiss three candidates because they may be too young and assume that the other sdB primaries are of low mass, PG 1743+477 and, in particular, HE 0532-4503 remain as candidates whose companions may have masses close to or above the Chandrasekhar limit. X-ray observations and accurate photometry are suggested to clarify their nature. As high inclination systems must also exist, an appropriate survey has already been launched to find such binaries.Peer reviewe
Hot subdwarf stars and their connection to thermonuclear supernovae
Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very
thin hydrogen envelopes, which can be formed by common envelope ejection. Close
sdB binaries with massive white dwarf (WD) companions are potential progenitors
of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor
candidate as well as a candidate for a surviving companion star, which escapes
from the Galaxy. More candidates for both types of objects have been found by
crossmatching known sdB stars with proper motion and light curve catalogues.
The Gaia mission will provide accurate astrometry and light curves of all the
stars in our hot subdwarf sample and will allow us to compile a much larger
all-sky catalogue of those stars. In this way we expect to find hundreds of
progenitor binaries and ejected companions.Comment: Proceedings of the 11th Pacific Rim Conference on Stellar
Astrophysics, Hong Kong 2015, Journal of Physics: Conference Series, in pres
- …