748 research outputs found
Coordinated design of coding and modulation systems
The joint optimization of the coding and modulation systems employed in telemetry systems was investigated. Emphasis was placed on formulating inner and outer coding standards used by the Goddard Spaceflight Center. Convolutional codes were found that are nearly optimum for use with Viterbi decoding in the inner coding of concatenated coding systems. A convolutional code, the unit-memory code, was discovered and is ideal for inner system usage because of its byte-oriented structure. Simulations of sequential decoding on the deep-space channel were carried out to compare directly various convolutional codes that are proposed for use in deep-space systems
Edge Dynamics in a Quantum Spin Hall State: Effects from Rashba Spin-Orbit Interaction
We analyze the dynamics of the helical edge modes of a quantum spin Hall
state in the presence of a spatially non-uniform Rashba spin-orbit (SO)
interaction. A randomly fluctuating Rashba SO coupling is found to open a
scattering channel which causes localization of the edge modes for a weakly
screened electron-electron (e-e) interaction. A periodic modulation of the SO
coupling, with a wave number commensurate with the Fermi momentum, makes the
edge insulating already at intermediate strengths of the e-e interaction. We
discuss implications for experiments on edge state transport in a HgTe quantum
well.Comment: 4 pages, 2 figures; published versio
Local Spectral Weight of a Luttinger Liquid: Effects from Edges and Impurities
We calculate the finite-temperature local spectral weight (LSW) of a
Luttinger liquid with an "open" (hard wall) boundary. Close to the boundary the
LSW exhibits characteristic oscillations indicative of spin-charge separation.
The line shape of the LSW is also found to have a Fano-like asymmetry, a
feature originating from the interplay between electron-electron interaction
and scattering off the boundary. Our results can be used to predict how edges
and impurities influence scanning tunneling microscopy (STM) of one-dimensional
electron systems at low temperatures and voltage bias. Applications to STM on
single-walled carbon nanotubes are discussed.Comment: 15 pages, 10 figues, The latest version in pdf format is available at
http://www.physik.uni-kl.de/eggert/papers/LSW-LL.pd
Metal-insulator transition in a quantum wire driven by a modulated Rashba spin-orbit coupling
We study the ground-state properties of electrons confined to a quantum wire
and subject to a smoothly modulated Rashba spin-orbit coupling. When the period
of the modulation becomes commensurate with the band filling, the Rashba
coupling drives a quantum phase transition to a nonmagnetic insulating state.
Using bosonization and a perturbative renormalization group approach, we find
that this state is robust against electron-electron interactions. The gaps to
charge- and spin excitations scale with the amplitude of the Rashba modulation
with a common interaction-dependent exponent. An estimate of the expected size
of the charge gap, using data for a gated InAs heterostructure, suggests that
the effect can be put to practical use in a future spin transistor design.Comment: 4 pages; published version (added references, typos corrected
Deciphering the local Interstellar spectra of primary cosmic ray species with HelMod
Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as
helium, oxygen, and mostly primary carbon are derived for the rigidity range
from 10 MV to ~200 TV using the most recent experimental results combined with
the state-of-the-art models for CR propagation in the Galaxy and in the
heliosphere. Two propagation packages, GALPROP and HelMod, are combined into a
single framework that is used to reproduce direct measurements of CR species at
different modulation levels, and at both polarities of the solar magnetic
field. The developed iterative maximum-likelihood method uses GALPROP-predicted
LIS as input to HelMod, which provides the modulated spectra for specific time
periods of the selected experiments for model-data comparison. The interstellar
and heliospheric propagation parameters derived in this study are consistent
with our prior analyses using the same methodology for propagation of CR
protons, helium, antiprotons, and electrons. The resulting LIS accommodate a
variety of measurements made in the local interstellar space (Voyager 1) and
deep inside the heliosphere at low (ACE/CRIS, HEAO-3) and high energies
(PAMELA, AMS-02).Comment: 13 pages, 13 figures, 6 tables, ApJ in press. arXiv admin note: text
overlap with arXiv:1704.0633
Modulated Rashba interaction in a quantum wire: Spin and charge dynamics
It was recently shown that a spatially modulated Rashba spin-orbit coupling
in a quantum wire drives a transition from a metallic to an insulating state
when the wave number of the modulation becomes commensurate with the Fermi wave
length of the electrons in the wire. It was suggested that the effect may be
put to practical use in a future spin transistor design. In the present article
we revisit the problem and present a detailed analysis of the underlying
physics. First, we explore how the build-up of charge density wave correlations
in the quantum wire due to the periodic gate configuration that produces the
Rashba modulation influences the transition to the insulating state. The
interplay between the modulations of the charge density and that of the
spin-orbit coupling turns out to be quite subtle: Depending on the relative
phase between the two modulations, the joint action of the Rashba interaction
and charge density wave correlations may either enhance or reduce the Rashba
current blockade effect. Secondly, we inquire about the role of the Dresselhaus
spin-orbit coupling that is generically present in a quantum wire embedded in
semiconductor heterostructure. While the Dresselhaus coupling is found to work
against the current blockade of the insulating state, the effect is small in
most materials. Using an effective field theory approach, we also carry out an
analysis of effects from electron- electron interactions, and show how the
single-particle gap in the insulating state can be extracted from the more
easily accessible collective charge and spin excitation thresholds. The
smallness of the single-particle gap together with the anti-phase relation
between the Rashba and chemical potential modulations pose serious difficulties
for realizing a Rashba-controlled current switch in an InAs-based device. Some
alternative designs are discussed.Comment: 20 pages, 6 figure
- …