49 research outputs found

    Scale dependence of cirrus heterogeneity effects. Part II: MODIS NIR and SWIR channels

    Get PDF
    In a context of global climate change, the understanding of the radiative role of clouds is crucial. On average, ice clouds such as cirrus have a significant positive radiative effect, but under some conditions the effect may be negative. However, many uncertainties remain regarding the role of ice clouds on Earth's radiative budget and in a changing climate. Global satellite observations are particularly well suited to monitoring clouds, retrieving their characteristics and inferring their radiative impact. To retrieve ice cloud properties (optical thickness and ice crystal effective size), current operational algorithms assume that each pixel of the observed scene is plane-parallel and homogeneous, and that there is no radiative connection between neighboring pixels. Yet these retrieval assumptions are far from accurate, as real radiative transfer is 3-D. This leads to the plane-parallel and homogeneous bias (PPHB) plus the independent pixel approximation bias (IPAB), which impacts both the estimation of top-of-the-atmosphere (TOA) radiation and the retrievals. An important factor that determines the impact of these assumptions is the sensor spatial resolution. High-spatial-resolution pixels can better represent cloud variability (low PPHB), but the radiative path through the cloud can involve many pixels (high IPAB). In contrast, low-spatial-resolution pixels poorly represent the cloud variability (high PPHB), but the radiation is better contained within the pixel field of view (low IPAB). In addition, the solar and viewing geometry (as well as cloud optical properties) can modulate the magnitude of the PPHB and IPAB. In this, Part II of our study, we simulate TOA 0.86 and 2.13 µm solar reflectances over a cirrus uncinus scene produced by the 3DCLOUD model. Then, 3-D radiative transfer simulations are performed with the 3DMCPOL code at spatial resolutions ranging from 50&thinsp;m to 10&thinsp;km, for 12 viewing geometries and nine solar geometries. It is found that, for simulated nadir observations taken at resolution higher than 2.5&thinsp;km, horizontal radiation transport (HRT) dominates biases between 3-D and 1-D reflectance calculations, but these biases are mitigated by the side illumination and shadowing effects for off-zenith solar geometries. At resolutions coarser than 2.5&thinsp;km, PPHB dominates. For off-nadir observations at resolutions higher than 2.5&thinsp;km, the effect that we call THEAB (tilted and homogeneous extinction approximation bias) due to the oblique line of sight passing through many cloud columns contributes to a large increase of the reflectances, but 3-D radiative effects such as shadowing and side illumination for oblique Sun are also important. At resolutions coarser than 2.5&thinsp;km, the PPHB is again the dominant effect. The magnitude and resolution dependence of PPHB and IPAB is very different for visible, near-infrared and shortwave infrared channels compared with the thermal infrared channels discussed in Part I of this study. The contrast of 3-D radiative effects between solar and thermal infrared channels may be a significant issue for retrieval techniques that simultaneously use radiative measurements across a wide range of solar reflectance and infrared wavelengths.</p

    Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach

    Full text link
    Nitrous oxide (N2O) -- a product of microbial nitrogen metabolism -- is a compelling exoplanet biosignature gas with distinctive spectral features in the near- and mid-infrared, and only minor abiotic sources on Earth. Previous investigations of N2O as a biosignature have examined scenarios using Earthlike N2O mixing ratios or surface fluxes, or those inferred from Earth's geologic record. However, biological fluxes of N2O could be substantially higher, due to a lack of metal catalysts or if the last step of the denitrification metabolism that yields N2 from N2O had never evolved. Here, we use a global biogeochemical model coupled with photochemical and spectral models to systematically quantify the limits of plausible N2O abundances and spectral detectability for Earth analogs orbiting main-sequence (FGKM) stars. We examine N2O buildup over a range of oxygen conditions (1%-100% present atmospheric level) and N2O fluxes (0.01-100 teramole per year; Tmol = 10^12 mole) that are compatible with Earth's history. We find that N2O fluxes of 10 [100] Tmol yr1^{-1} would lead to maximum N2O abundances of ~5 [50] ppm for Earth-Sun analogs, 90 [1600] ppm for Earths around late K dwarfs, and 30 [300] ppm for an Earthlike TRAPPIST-1e. We simulate emission and transmission spectra for intermediate and maximum N2O concentrations that are relevant to current and future space-based telescopes. We calculate the detectability of N2O spectral features for high-flux scenarios for TRAPPIST-1e with JWST. We review potential false positives, including chemodenitrification and abiotic production via stellar activity, and identify key spectral and contextual discriminants to confirm or refute the biogenicity of the observed N2O.Comment: 22 pages, 17 figures; ApJ, 937, 10

    CAMEMBERT: A Mini-Neptunes GCM Intercomparison, Protocol Version 1.0. A CUISINES Model Intercomparison Project

    Full text link
    With an increased focus on the observing and modelling of mini-Neptunes, there comes a need to better understand the tools we use to model their atmospheres. In this paper, we present the protocol for the CAMEMBERT (Comparing Atmospheric Models of Extrasolar Mini-neptunes Building and Envisioning Retrievals and Transits) project, an intercomparison of general circulation models (GCMs) used by the exoplanetary science community to simulate the atmospheres of mini-Neptunes. We focus on two targets well studied both observationally and theoretically with planned JWST Cycle 1 observations: the warm GJ~1214b and the cooler K2-18b. For each target, we consider a temperature-forced case, a clear sky dual-grey radiative transfer case, and a clear sky multi band radiative transfer case, covering a range of complexities and configurations where we know differences exist between GCMs in the literature. This paper presents all the details necessary to participate in the intercomparison, with the intention of presenting the results in future papers. Currently, there are eight GCMs participating (ExoCAM, Exo-FMS, FMS PCM, Generic PCM, MITgcm, RM-GCM, THOR, and the UM), and membership in the project remains open. Those interested in participating are invited to contact the authors.Comment: Accepted to PS

    No phosphine in the atmosphere of Venus

    Get PDF
    The detection of phosphine (PH₃) has been recently reported in the atmosphere of Venus employing mm-wave radio observations (Greaves et at. 2020). We here demonstrate that the observed PH₃ feature with JCMT can be fully explained employing plausible mesospheric SO₂ abundances (~100 ppbv as per the SO₂ profile given in their figure 9), while the identification of PH₃ in the ALMA data should be considered invalid due to severe baseline calibration issues. We demonstrate this by independently calibrating and analyzing the ALMA data using different interferometric analysis tools, in which we observe no PH₃ in all cases. Furthermore, for any PH₃ signature to be produced in either ALMA or JCMT spectra, PH₃ needs to present at altitudes above 70 km, in stark disagreement with their photochemical network. We ultimately conclude that this detection of PH₃ in the atmosphere of Venus is not supported by our analysis of the data

    Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System

    Full text link
    The TRAPPIST-1 system, consisting of an ultra-cool host star having seven known Earth-size planets will be a prime target for atmospheric characterization with JWST. However, the detectability of atmospheric molecular species may be severely impacted by the presence of clouds and/or hazes. In this work, we perform 3-D General Circulation Model (GCM) simulations with the LMD Generic model supplemented by 1-D photochemistry simulations at the terminator with the Atmos model to simulate several possible atmospheres for TRAPPIST-1e, 1f and 1g: 1) modern Earth, 2) Archean Earth, and 3) CO2-rich atmospheres. JWST synthetic transit spectra were computed using the GSFC Planetary Spectrum Generator (PSG). We find that TRAPPIST-1e, 1f and 1g atmospheres, with clouds and/or hazes, could be detected using JWST's NIRSpec prism from the CO2 absorption line at 4.3 um in less than 15 transits at 3 sigma or less than 35 transits at 5 sigma. However, our analysis suggests that other gases would require hundreds (or thousands) of transits to be detectable. We also find that H2O, mostly confined in the lower atmosphere, is very challenging to detect for these planets or similar systems if the planets' atmospheres are not in a moist greenhouse state. This result demonstrates that the use of GCMs, self-consistently taking into account the effect of clouds and sub-saturation, is crucial to evaluate the detectability of atmospheric molecules of interest as well as for interpreting future detections in a more global (and thus robust and relevant) approach.Comment: 36 pages, 19 figure
    corecore