21 research outputs found

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Optimization of the Strength-Fracture Toughness Relation in Particulate-Reinforced Aluminum Composites via Control of the Matrix Microstructure

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1007/s11661-998-0119-9The evolution of the microstructure and mechanical properties of a 17.5 vol. pct SiC particulatereinforced aluminum alloy 6092-matrix composite has been studied as a function of postfabrication processing and heat treatment. It is demonstrated that, by the control of particulate distribution, matrix grain, and substructure and of the matrix precipitate state, the strength-toughness combination in the composite can be optimized over a wide range of properties, without resorting to unstable, underaged (UA) matrix microstructures, which are usually deemed necessary to produce a higher fracture toughness than that displayed in the peak-aged condition. Further, it is demonstrated that, following an appropriate combination of thermomechanical processing and unconventional heat treatment, the composite may possess better stiffness, strength, and fracture toughness than a similar unreinforced alloy. In the high- and low-strength matrix microstructural conditions, the matrix grain and substructure were found to play a substantial role in determining fracture properties. However, in the intermediate- strength regime, properties appeared to be optimizable by the utilization of heat treatments only. These observations are rationalized on the basis of current understanding of the grain size dependence of fracture toughness and the detailed microstructural features resulting from thermomechanical treatments.United States Army Research OfficeArmy Research LabratoryUnited States Air Force Office of Scientific ResearchWright Materials LabratoryDWA Composite

    Prognostic Value of Podoplanin Expression in Oral Squamous Cell Carcinoma―A Regression Model Auxiliary to UICC Classification

    Get PDF
    Podoplanin, a type I transmembrane glycoprotein with an effect of platelet aggregation, has been reported to be one of the possible prognostic factors of oral squamous cell carcinoma (OSCC). However, the biological significance of podoplanin is largely unclear. The aim of this study was to develop a practical model for the prediction of prognosis using the grade of podoplanin expression, and also to evaluate the biological function of podoplanin. Eighty-two specimens of patients with previously untreated OSCC, who underwent either biopsy or surgery, were histopathologically and immunohistochemically analyzed. These 82 cases were composed of 66 well-differentiated, 10 moderately differentiated and 6 poorly differentiated OSCC. Podoplanin was successfully immunostained in 78 specimens, and was detected in most cases, but the frequency of positive cells varied. The prognosis of patients with more than 50 % podoplanin-positive tumor cells was significantly poorer than that of the other patients. Multivariate hazards regression analysis suggested that a linear combination of covariates, OSCC patients with more or less than 50 % podoplanin expression, age of more or less than 70 years old, mode of invasion and T3, T4 or T2 versus T1 of the UICC T-stage classification was the most effective model for evaluating the prognosis of OSCC patients. Additionally, podoplanin expression had a significant relationship to UICC clinical stage and the expression of Ki-67. An effective regression model using podoplanin expression was developed for evaluating the prognosis of OSCC and the biological significance of podoplanin was suggested to be associated with the growth and/or progression of OSCC
    corecore