867 research outputs found

    On the well posedness of Robinson Trautman Maxwell solutions

    Full text link
    We show that the so called Robinson-Trautman-Maxwell equations do not constitute a well posed initial value problem. That is, the dependence of the solution on the initial data is not continuous in any norm built out from the initial data and a finite number of its derivatives. Thus, they can not be used to solve for solutions outside the analytic domain.Comment: 9 page

    On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations

    Full text link
    We give a well posed initial value formulation of the Baumgarte-Shapiro-Shibata-Nakamura form of Einstein's equations with gauge conditions given by a Bona-Masso like slicing condition for the lapse and a frozen shift. This is achieved by introducing extra variables and recasting the evolution equations into a first order symmetric hyperbolic system. We also consider the presence of artificial boundaries and derive a set of boundary conditions that guarantee that the resulting initial-boundary value problem is well posed, though not necessarily compatible with the constraints. In the case of dynamical gauge conditions for the lapse and shift we obtain a class of evolution equations which are strongly hyperbolic and so yield well posed initial value formulations

    Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations

    Get PDF
    This paper is concerned with the initial-boundary value problem for the Einstein equations in a first-order generalized harmonic formulation. We impose boundary conditions that preserve the constraints and control the incoming gravitational radiation by prescribing data for the incoming fields of the Weyl tensor. High-frequency perturbations about any given spacetime (including a shift vector with subluminal normal component) are analyzed using the Fourier-Laplace technique. We show that the system is boundary-stable. In addition, we develop a criterion that can be used to detect weak instabilities with polynomial time dependence, and we show that our system does not suffer from such instabilities. A numerical robust stability test supports our claim that the initial-boundary value problem is most likely to be well-posed even if nonzero initial and source data are included.Comment: 27 pages, 4 figures; more numerical results and references added, several minor amendments; version accepted for publication in Class. Quantum Gra

    Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations

    Get PDF
    We present a set of well-posed constraint-preserving boundary conditions for a first-order in time, second-order in space, harmonic formulation of the Einstein equations. The boundary conditions are tested using robust stability, linear and nonlinear waves, and are found to be both less reflective and constraint preserving than standard Sommerfeld-type boundary conditions.Comment: 18 pages, 7 figures, accepted in CQ

    Binary neutron-star mergers with Whisky and SACRA: First quantitative comparison of results from independent general-relativistic hydrodynamics codes

    Full text link
    We present the first quantitative comparison of two independent general-relativistic hydrodynamics codes, the Whisky code and the SACRA code. We compare the output of simulations starting from the same initial data and carried out with the configuration (numerical methods, grid setup, resolution, gauges) which for each code has been found to give consistent and sufficiently accurate results, in particular in terms of cleanness of gravitational waveforms. We focus on the quantities that should be conserved during the evolution (rest mass, total mass energy, and total angular momentum) and on the gravitational-wave amplitude and frequency. We find that the results produced by the two codes agree at a reasonable level, with variations in the different quantities but always at better than about 10%.Comment: Published on Phys. Rev.

    Improved outer boundary conditions for Einstein's field equations

    Get PDF
    In a recent article, we constructed a hierarchy B_L of outer boundary conditions for Einstein's field equations with the property that, for a spherical outer boundary, it is perfectly absorbing for linearized gravitational radiation up to a given angular momentum number L. In this article, we generalize B_2 so that it can be applied to fairly general foliations of spacetime by space-like hypersurfaces and general outer boundary shapes and further, we improve B_2 in two steps: (i) we give a local boundary condition C_2 which is perfectly absorbing including first order contributions in 2M/R of curvature corrections for quadrupolar waves (where M is the mass of the spacetime and R is a typical radius of the outer boundary) and which significantly reduces spurious reflections due to backscatter, and (ii) we give a non-local boundary condition D_2 which is exact when first order corrections in 2M/R for both curvature and backscatter are considered, for quadrupolar radiation.Comment: accepted Class. Quant. Grav. numerical relativity special issue; 17 pages and 1 figur

    Numerical evolutions of a black hole-neutron star system in full General Relativity: I. Head-on collision

    Get PDF
    We present the first simulations in full General Relativity of the head-on collision between a neutron star and a black hole of comparable mass. These simulations are performed through the solution of the Einstein equations combined with an accurate solution of the relativistic hydrodynamics equations via high-resolution shock-capturing techniques. The initial data is obtained by following the York-Lichnerowicz conformal decomposition with the assumption of time symmetry. Unlike other relativistic studies of such systems, no limitation is set for the mass ratio between the black hole and the neutron star, nor on the position of the black hole, whose apparent horizon is entirely contained within the computational domain. The latter extends over ~400M and is covered with six levels of fixed mesh refinement. Concentrating on a prototypical binary system with mass ratio ~6, we find that although a tidal deformation is evident the neutron star is accreted promptly and entirely into the black hole. While the collision is completed before ~300M, the evolution is carried over up to ~1700M, thus providing time for the extraction of the gravitational-wave signal produced and allowing for a first estimate of the radiative efficiency of processes of this type.Comment: 16 pages, 12 figure

    Introduction to dynamical horizons in numerical relativity

    Full text link
    This paper presents a quasi-local method of studying the physics of dynamical black holes in numerical simulations. This is done within the dynamical horizon framework, which extends the earlier work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal surfaces and study their time evolution. An important ingredient is the calculation of the signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We describe our numerical implementation of these concepts and apply them to three specific test cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron star, and a non-axisymmetric black hole collision with non-zero initial orbital angular momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic content shortene

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. cc\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications

    Full text link
    We present new results from two open source codes, using finite differencing and pseudo-spectral methods for the wave equations in (3+1) dimensions. We use a hyperboloidal transformation which allows direct access to null infinity and simplifies the control over characteristic speeds on Kerr-Schild backgrounds. We show that this method is ideal for attaching hyperboloidal slices or for adapting the numerical resolution in certain spacetime regions. As an example application, we study late-time Kerr tails of sub-dominant modes and obtain new insight into the splitting of decay rates. The involved conformal wave equation is freed of formally singular terms whose numerical evaluation might be problematically close to future null infinity.Comment: 15 pages, 12 figure
    corecore