44,791 research outputs found
VR/Urban: spread.gun - design process and challenges in developing a shared encounter for media façades
Designing novel interaction concepts for urban environments is not only a technical challenge in terms of scale, safety, portability and deployment, but also a challenge of designing for social configurations and spatial settings. To outline what it takes to create a consistent and interactive experience in urban space, we describe the concept and multidisciplinary design process of VR/Urban's media intervention tool called Spread.gun, which was created for the Media Façade Festival 2008 in Berlin. Main design aims were the anticipation of urban space, situational system configuration and embodied interaction. This case study also reflects on the specific technical, organizational and infrastructural challenges encountered when developing media façade installations
Head-up transition behavior of pilots with and without head-up display in simulated low-visibility approaches
To quantify head-up transition behavior with and without a flightpath type head-up display, eight rated B-727 pilots each flew 31 manual and coupled approaches in a simulator with B-727 dynamics and collimated model board external scene. Data were also obtained on the roll played by the head-up display in the coupled-to-manual transition. Various wind shears, low visibilities, and ceilings were tested along with unexpected misalignment between the runway and head-up display symbology. The symbolic format used was a conformal scene. Every pilot except one stayed head-up, flying with the display after descending below the ceiling. Without the display and as altitude decreased, the number of lookups from the instrument panel decreased and the duration of each one increased. No large differences in mean number or duration of transitions up or down were found during the head-up display runs comparing the no-misalignment with the lateral instrument landing system offset misalignment runs. The head-up display led to fewer transitions after the pilot made a decision to land or execute a missed approach. Without the display, pilots generally waited until they had descended below the ceiling to look outside the first time, but with it several pilots looked down at their panel at relatively high altitudes (if they looked down at all). Manual takeover of control was rapid and smooth both with and without the display which permitted smoother engine power changes
Perturbations of Spatially Closed Bianchi III Spacetimes
Motivated by the recent interest in dynamical properties of topologically
nontrivial spacetimes, we study linear perturbations of spatially closed
Bianchi III vacuum spacetimes, whose spatial topology is the direct product of
a higher genus surface and the circle. We first develop necessary mode
functions, vectors, and tensors, and then perform separations of (perturbation)
variables. The perturbation equations decouple in a way that is similar to but
a generalization of those of the Regge--Wheeler spherically symmetric case. We
further achieve a decoupling of each set of perturbation equations into
gauge-dependent and independent parts, by which we obtain wave equations for
the gauge-invariant variables. We then discuss choices of gauge and stability
properties. Details of the compactification of Bianchi III manifolds and
spacetimes are presented in an appendix. In the other appendices we study
scalar field and electromagnetic equations on the same background to compare
asymptotic properties.Comment: 61 pages, 1 figure, final version with minor corrections, to appear
in Class. Quant. Gravi
Thermal Conductivity of Single Wall Carbon Nanotubes: Diameter and Annealing Dependence
The thermal conductivity, k(T), of bulk single-wall carbon nanotubes (SWNT's)
displays a linear temperature dependence at low T that has been attributed to
1D quantization of phonons. To explore this issue further, we have measured the
k(T) of samples with varying average tube diameters. We observe linear k(T) up
to higher temperatures in samples with smaller diameters, in agreement with a
quantization picture. In addition, we have examined the effect of annealing on
k(T). We observe an enhancement in k(T) for annealed samples which we attribute
to healing of defects and removal of impurities. These measurements demonstrate
how the thermal properties of an SWNT material can be controlled by
manipulating its intrinsic nanoscale properties.Comment: Proc. of the XV. Int. Winterschool on Electronic Properties of Novel
Materials, Kirchberg/Tirol, Austria, 200
Current-eddy interaction in the Agulhas Return Current region from the seismic oceanography perspective
Interleaving in the Agulhas Return Current (ARC) frontal region is commonly manifested in the form of thermohaline intrusions, as sub-tropical and sub-polar water masses of similar density meet. In Jan/Feb 2012, the Naval Research Laboratory and collaborators carried out a field experiment in which seismic and traditional hydrographic observations were acquired to examine frontal zone mixing processes. The high lateral resolution (10 m) of the seismic observations allowed fine-scale lateral tracking of thermal intrusions, which were corroborated with simultaneous XBT casts. Between seismic deployments both salinity and temperature data were acquired via CTD, Underway-CTD and microstructure profiles. This study focuses on analyzing seismic reflection data in a particular E-W transect where the northward flowing ARC interacted with the southward flowing portion of a large anticyclonic eddy. Strong reflectors were most prominent at the edge of a hyperbolic zone formed between the eddy and ARC, where sub-polar waters interacted with waters of sub-tropical origin on either side. Reflectors were shallow within the hyperbolic zone and extended to 1200 m below the ARC. The nature of the observed reflectors will be determined from comparison of seismic reflection and derived ∂T/∂z fields, and XBT and TS profiles from the available hydrographic data
Field-tuned quantum critical point of antiferromagnetic metals
A magnetic field applied to a three-dimensional antiferromagnetic metal can
destroy the long-range order and thereby induce a quantum critical point. Such
field-induced quantum critical behavior is the focus of many recent
experiments. We investigate theoretically the quantum critical behavior of
clean antiferromagnetic metals subject to a static, spatially uniform external
magnetic field. The external field does not only suppress (or induce in some
systems) antiferromagnetism but also influences the dynamics of the order
parameter by inducing spin precession. This leads to an exactly marginal
correction to spin-fluctuation theory. We investigate how the interplay of
precession and damping determines the specific heat, magnetization,
magnetocaloric effect, susceptibility and scattering rates. We point out that
the precession can change the sign of the leading \sqrt{T} correction to the
specific heat coefficient c(T)/T and can induce a characteristic maximum in
c(T)/T for certain parameters. We argue that the susceptibility \chi =\partial
M/\partial B is the thermodynamic quantity which shows the most significant
change upon approaching the quantum critical point and which gives experimental
access to the (dangerously irrelevant) spin-spin interactions.Comment: 12 pages, 8 figure
Fluids with quenched disorder: Scaling of the free energy barrier near critical points
In the context of Monte Carlo simulations, the analysis of the probability
distribution of the order parameter , as obtained in simulation
boxes of finite linear extension , allows for an easy estimation of the
location of the critical point and the critical exponents. For Ising-like
systems without quenched disorder, becomes scale invariant at the
critical point, where it assumes a characteristic bimodal shape featuring two
overlapping peaks. In particular, the ratio between the value of at
the peaks () and the value at the minimum in-between ()
becomes -independent at criticality. However, for Ising-like systems with
quenched random fields, we argue that instead should be observed, where is the
"violation of hyperscaling" exponent. Since is substantially non-zero,
the scaling of with system size should be easily detectable in
simulations. For two fluid models with quenched disorder, versus
was measured, and the expected scaling was confirmed. This provides further
evidence that fluids with quenched disorder belong to the universality class of
the random-field Ising model.Comment: sent to J. Phys. Cond. Mat
Eluate derived by extracorporal antibody-based immunoadsorption elevates the cytosolic Ca2+ concentration in podocytes via B-2 kinin receptors
Background/Aim: Patients with idiopathic focal segmental glomerulosclerosis (FSGS) often develop a recurrence of the disease after kidney transplantation. In a number of FSGS patients, plasmapheresis and immunoadsorption procedures have been shown to transiently reduce proteinuria and are thought to do this by eliminating a circulating factor. Direct cellular effects of eluates from immunoadsorption procedures on podocytes, the primary target of injury in FSGS, have not yet been reported. Methods: Eluates were derived from antibody-based immunoadsorption of a patient suffering from primary FSGS, a patient with systemic lupus erythematosus, and a healthy volunteer. The cytosolic free Ca2+ concentration ({[}Ca2+](i)) of differentiated podocytes was measured by single-cell fura-2 microfluorescence measurements. Free and total immunoreactive kinin levels were measured by radioimmunoassay. Results: FSGS eluates increased the {[}Ca2+](i) levels concentration dependently (EC50 0.14 mg/ml; n = 3-19). 1 mg/ml eluate increased the {[}Ca2+](i) values reversibly from 82 +/- 12 to 1,462 +/- 370 nmol/l, and then they returned back to 100 16 nmol/l (n = 19). The eluate-induced increase of {[}Ca2+](i) consisted of an initial Ca2+ peak followed by a Ca2+ plateau which depended on the extracellular Ca2+ concentration. The eluate-induced increase of {[}Ca2+](i) was inhibited by the specific B-2 kinin receptor antagonist Hoe 140 in a concentration-dependent manner (IC50 2.47 nmol/l). In addition, prior repetitive application of bradykinin desensitized the effect of eluate on {[}Ca2+](i). A colonic epithelial cell line not reacting to bradykinin did not respond to eluate either (n = 6). Similar to FSGS eluates, the eluate preparations of both the systemic lupus patient and the healthy volunteer led to a biphasic, concentration-dependent {[}Ca2+](i) increase in poclocytes which again was inhibited by Hoe 140. Free kinins were detected in all eluate preparations. Conclusion: The procedure of antibody-based immunoadsorption leads to kinin in the eluate which elevates the {[}Ca2+](i) level of podocytes via B-2 kinin receptors. Copyright (C) 2002 S. Karger AG, Basel
Pain and delirium: mechanisms, assessment, and management
Purpose:
Pain and delirium are common problems for older people. Both conditions are prevalent in acute hospital settings. In people living in the community, delirium often precipitates presentation to the emergency department. Pain and delirium are known to interact in a complex and multidirectional way. This can make it challenging for staff to recognize and treat pain in people with delirium.
Methods:
This paper aims to explore the complex relationship between pain and delirium and on pain assessment in delirium, drawing together evidence from a range of settings including acute medical, cardiac and orthopaedic post-operative cohorts, as well as from aged care.
Results:
A limited number of studies suggest there is an association between pain and delirium; however, this is a complex, particularly where analgesics which may-themselves cause delirium are prescribed. Factors acting on the pathway between pain and delirium may include depression, sleep deprivation and disturbance of the cholinergic system. Delirium affects the ability to self-report pain. The fluctuating nature of delirium as well as reduced awareness and attention may challenge practitioners in recognizing, assessing and treating pain. Evidence concerning the reliability and validity of current observational and self-assessment tools in people with delirium is unclear but some show promise in this population.
Conclusion:
The current evidence base regarding assessing pain in people with delirium is lacking. Tentative recommendations, drawing on current guidelines require robust testing. Guidelines for people with pain and dementia require adaptations regarding the unique characteristics of delirium. The complex interplay between dementia, pain and delirium warrants further investigation across a range of settings
- …