5,242 research outputs found

    Feshbach resonant scattering of three fermions in one-dimensional wells

    Get PDF
    We study the weak-tunnelling limit for a system of cold 40K atoms trapped in a one-dimensional optical lattice close to an s-wave Feshbach resonance. We calculate the local spectrum for three atoms at one site of the lattice within a two-channel model. Our results indicate that, for this one-dimensional system, one- and two-channel models will differ close to the Feshbach resonance, although the two theories would converge in the limit of strong Feshbach coupling. We also find level crossings in the low-energy spectrum of a single well with three atoms that may lead to quantum phase transition for an optical lattice of many wells. We discuss the stability of the system to a phase with non-uniform density.Comment: 10 pages, 5 figure

    Bosonic Fractional Quantum Hall States in Rotating Optical Lattices: Projective Symmetry Group Analysis

    Full text link
    We study incompressible ground states of bosons in a two-dimensional rotating square optical lattice. The system can be described by the Bose-Hubbard model in an effective uniform magnetic field present due to the lattice rotation. To study ground states of the system, we map it to a frustrated spin model, followed by Schwinger boson mean field theory and projective symmetry group analysis. Using symmetry analysis we identify bosonic fractional quantum Hall states, predicted for bosonic atoms in rotating optical lattices, with possible stable gapped spin liquid states within the Schwinger boson formalism. In particular, we find that previously found fractional quantum Hall states induced by the lattice potential, and with no counterpart in the continuum [G. M\"oller, and N. R. Cooper, Phys. Rev. Lett. \textbf{103}, 105303 (2009)], correspond to "Ď€\pi flux" spin liquid states of the frustrated spin model.Comment: 11 page

    Quantum and Classical in Adiabatic Computation

    Get PDF
    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialised state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose groundstate encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimisation algorithms and quantum adiabatic optimisation. This new perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing - though inconclusive - results

    The Extreme Compact Starburst in MRK 273

    Full text link
    Images of neutral Hydrogen 21cm absorption and radio continuum emission at 1.4 GHz from Mrk 273 were made using the Very Long Baseline Array and Very Large Array. These images reveal a gas disk associated with the northern nuclear region with a diameter of 0.5'' (370 pc), at an inclination angle of 53deg. The radio continuum emission is composed of a diffuse component plus a number of compact sources. This morphology resembles those of nearby, lower luminosity starburst galaxies. These images provide strong support for the hypothesis that the luminosity of the northern source is dominated by an extreme compact starburst. The HI 21cm absorption shows an east-west gradient in velocity of 450 km/s across 0.3'' (220 pc), implying an enclosed mass of 2e9 M_solar, comparable to the molecular gas mass. The brightest of the compact sources may indicate radio emission from an active nucleus (AGN), but this source contributes only 3.8% to the total flux density of the northern nuclear region. The HI 21cm absorption toward the southeast radio nucleus suggests infall at 200 km/s on scales < 40 pc, and the southwest near IR nucleus is not detected in high resolution radio continuum images.Comment: standard AAS format, 23 pages, 5 figures, fixed figure. To appear in ApJ Letter

    Charge and spin fractionalization in strongly correlated topological insulators

    Full text link
    We construct an effective topological Landau-Ginzburg theory that describes general SU(2) incompressible quantum liquids of strongly correlated particles in two spatial dimensions. This theory characterizes the fractionalization of quasiparticle quantum numbers and statistics in relation to the topological ground-state symmetries, and generalizes the Chern-Simons, BF and hierarchical effective gauge theories to an arbitrary representation of the SU(2) symmetry group. Our main focus are fractional topological insulators with time-reversal symmetry, which are treated as generalizations of the SU(2) quantum Hall effect.Comment: 8 pages, published versio

    Discovery of High-Latitude CO in a HI Supershell in NGC 5775

    Full text link
    We report the discovery of very high latitude molecular gas in the edge-on spiral galaxy, NGC 5775. Emission from both the J=1-0 and 2-1 lines of 12CO is detected up to 4.8 kpc away from the mid-plane of the galaxy. NGC 5775 is known to host a number of HI supershells. The association of the molecular gas M(H2,F2) = 3.1x10^7 solar masses reported here with one of the HI supershells (labeled F2) is clear, which suggests that molecular gas may have survived the process which originally formed the supershell. Alternatively, part of the gas could have been formed in situ at high latitude from shock-compression of pre-existing HI gas. The CO J=2-1/J=1-0 line ratio of 0.34+-40% is significantly lower than unity, which suggests that the gas is excited subthermally, with gas density a few times 100 cubic cm. The molecular gas is likely in the form of cloudlets which are confined by magnetic and cosmic rays pressure. The potential energy of the gas at high latitude is found to be 2x10^56 ergs and the total (HI + H2) kinetic energy is 9x10^53 ergs. Based on the energetics of the supershell, we suggest that most of the energy in the supershell is in the form of potential energy and that the supershell is on the verge of falling and returning the gas to the disk of the galaxy.Comment: Accept by ApJL, 4 pages, 3 ps figure

    High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz

    Get PDF
    We present a wide field, sub-arcminute resolution VLA image of the Galactic Center region at 330 MHz. With a resolution of ~ 7" X 12" and an RMS noise of 1.6 mJy/beam, this image represents a significant increase in resolution and sensitivity over the previously published VLA image at this frequency. The improved sensitivity has more than tripled the census of small diameter sources in the region, has resulted in the detection of two new Non Thermal Filaments (NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known extended sources in greater detail, and has resulted in the first detection of Sagittarius A* in this frequency range. A version of this paper containing full resolution images may be found at http://lwa.nrl.navy.mil/nord/AAAB.pdf.Comment: Astronomical Journal, Accepted 62 Pages, 21 Figure

    A possible radio supernova in the outer part of NGC 3310

    Full text link
    As part of an on-going radio supernova monitoring program, we have discovered a variable, compact steep spectrum radio source ~65 arcsec (~4 kpc) from the centre of the starburst galaxy NGC 3310. If the source is at the distance of NGC 3310, then its 5 GHz luminosity is ~3 x 10^{19} WHz^-1. The source luminosity, together with its variability characteristics, compact structure (<17 mas) and its association with a group of HII regions, leads us to propose that it is a previously uncatalogued type II radio supernova. A search of archival data also shows an associated X-ray source with a luminosity similar to known radio supernova.Comment: 5 pages, 3 figures. Accepted by MNRA

    Spatially-resolved Thermal Continuum Absorption against the Supernova Remnant W49B

    Get PDF
    We present sub-arcminute resolution imaging of the Galactic supernova remnant W49B at 74 MHz (25") and 327 MHz (6"), the former being the lowest frequency at which the source has been resolved. While the 327 MHz image shows a shell-like morphology similar to that seen at higher frequencies, the 74 MHz image is considerably different, with the southwest region of the remnant almost completely attenuated. The implied 74 MHz optical depth (~ 1.6) is much higher than the intrinsic absorption levels seen inside two other relatively young remnants, Cas A and the Crab Nebula, nor are natural variations in the relativistic electron energy spectra expected at such levels. The geometry of the absorption is also inconsistent with intrinsic absorption. We attribute the absorption to extrinsic free-free absorption by a intervening cloud of thermal electrons. Its presence has already been inferred from the low-frequency turnover in the integrated continuum spectrum and from the detection of radio recombination lines toward the remnant. Our observations confirm the basic conclusions of those measurements, and our observations have resolved the absorber into a complex of classical HII regions surrounded either partially or fully by low-density HII gas. We identify this low-density gas as an extended HII region envelope (EHE), whose statistical properties were inferred from low resolution meter- and centimeter-wavelength recombination line observations. Comparison of our radio images with HI and H_2CO observations show that the intervening thermal gas is likely associated with neutral and molecular material as well.Comment: 18 pages, LaTeX with AASTeX-5, 5 figures in 7 PostScript files; accepted for publication in the Ap
    • …
    corecore