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We calculate the spectrum for three atoms in a one-dimensional harmonic well near an s-wave Feshbach
resonance using a two-channel model to describe the Feshbach physics. This is relevant to the study of cold
40K atoms trapped in a one-dimensional optical lattice. Our results indicate that, for this one-dimensional
system, one- and two-channel models will differ close to the Feshbach resonance, although the two theories
would converge in the limit of strong Feshbach coupling. We also find level crossings in the low-energy
spectrum of a single well with three atoms that may lead to quantum phase transition for an optical lattice of
many wells. We discuss the stability of the system to a phase with nonuniform density.
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I. INTRODUCTION

Quantum simulation of strongly correlated models of con-
densed matter systems has become one of the most exciting
goals in ultracold atom experiments, thanks to the spectacu-
lar progress in trapping cold fermions in optical lattices at
degeneracy temperatures �1�. This system goes beyond tradi-
tional experiments in solids, because it is readily possible to
tune independently the hopping amplitude and interaction
strength. In particular, by changing the external magnetic
field that tunes the relative Zeeman energy between the scat-
tering state and a closed �bound state� channel, one can reach
a particular Feshbach resonance between two hyperfine
states of, for example, 40K where the scattering length be-
tween these states becomes very large and positive �2�. This
then allows one to tune the on-site two-body interaction to be
strongly repulsive. With this, the fermionic Mott insulator,
where interaction driven locking of fermions into a crystal-
line structure, has been demonstrated in two recent experi-
ments �3,4�. Currently, there are great experimental interests
to reach ordered phases in these systems, in order to under-
stand the phase diagram of the two-dimensional single-band
Hubbard model, a model that has been hypothesized to be
the minimal model for the high temperature superconductors
�5�.

Indeed, the unprecedented experimental possibility of
studying extremely strong repulsion has spurred on much
theoretical effort �1�. In particular, it was recognized that,
close to a Feshbach resonance, the strongly enhanced two-
body interaction leads to states with occupation of multiple
Bloch bands of the optical lattice, both in experimental �6�
and theoretical studies �7,8�. These multiband systems�9,10�
may lead to richer phases, by analogy with multiorbital sys-
tems in solid state materials.

While the ultracold atoms parameters of the one-band
Hubbard model have been derived right from the beginning
�11�, the parameters for the multiband generalization have
only more recently received some attention �7,8,12–16�. Mo-
tivated by the experiments of Köhl et al. �6� where the aver-
age filling per lattice site is about two fermions or slightly
more, we study here the energy spectra when two or three
fermions interact near a Feshbach resonance within a site of

the deep optical lattice, using a two-channel description of
the Feshbach resonance. This is then the first step towards
deriving from microscopic physics, the effective model and
its parameters for a system of strongly interacting fermions
in an optical lattice.

In this paper, we consider a system of cold fermionic 40K
atoms in the two lowest internal states trapped in a deep
optical lattice close to an interspecies s-wave Feshbach reso-
nance. We assume a lattice with average filling of two atoms
per site with an equal mix of the two internal states. For
simplicity, we consider only a one-dimensional �1D� system.
In experiments with cold atoms in optical lattices, a set of
quasi-1D tubes can be obtained from a three-dimensional
�3D� optical lattice, V�r��=V0x sin2 kxx+V0y sin2 kyy
+V0z sin2 kzz, by adjusting the laser amplitudes so that V0z
�V0x=V0y �17,18�. We concentrate on the weak tunnelling
limit �deep lattice�, in which experiments with lattice fermi-
ons across a Feshbach resonance are usually performed �6�,
and approximate the optical lattice potential at each lattice
site by a harmonic well, Vho=�i=x,y,z��i

2 /2 with ��i
2 /2

=2ki
2V0i. The local spectrum and eigenstates for two and

three atoms at a lattice site provide then a microscopic basis
for the model of such lattices found by Ho �10� where a weak
tunneling is introduced perturbatively.

The spectrum for two atoms in a harmonic well close to a
s-wave Feshbach resonance was previously studied in, e.g.,
�7� within the one-channel model for the harmonic confine-
ment in one, two, and three dimensions and in �8� within the
two-channel model for a three-dimensional harmonic trap.
However, the spectrum for three atoms in a well was previ-
ously studied only within the one-channel model �e.g., for
3D harmonic confinement �12�, quasi-1D confinement
�13,16� and fermions at unitarity �14,15��. Here, we calculate
the spectrum within the two-channel model and examine the
ground state for our system across the resonance. We find the
level crossings in the low-energy spectrum that may lead to
quantum phase transition when multiple wells form an opti-
cal lattice. Similar features were found in the spectrum for a
3D system in �12� within the one-channel model. However,
we find that there are quantitative differences between our
two-channel and their one-channel results at and near the
Feshbach resonance. We note here �and see below in Sec.
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IV� that such qualitative differences occur already for two-
fermion scattering and appears to be specific to the 1D
geometry here.

II. TWO-CHANNEL MODEL FOR THREE
ATOMS IN A WELL

When V0z�V0x=V0y, the system can be described by an
effective 1D Hamiltonian. The effective 1D parameters can
be related to the physical 3D parameters in the limit �z→0
as presented in �19�. We concentrate on the weak tunneling
limit and calculate the local spectrum when there are three
atoms in two different internal states in the well.

The 40K atoms are assumed to be trapped in the two low-
est hyperfine energy states �F1 ,mF1

�= �9 /2,−9 /2� and
�F2 ,mF2

�= �9 /2,−7 /2�. The interatomic interaction potential,

U�r�1−r�2�=Uc�r�1−r�2�+Us�r�1−r�2�S�1 ·S�2, depends only on
electronic spins of atoms and preserves the total angular mo-
mentum projection of the two colliding atoms, mF=mF1
+mF2

. Then, for the two 40K atoms in the two lowest internal
states that constitute the open entrance channel, ��1 ,�2�
= �9 /2,−9 /2;9 /2,−7 /2�, the only closed-channel coupled to
this state is �9 /2,−9 /2;7 /2,−7 /2�. For simplicity, we will
use here the notation �9 /2,−9 /2���↑ �, �9 /2,−7 /2���↓ �,
and �7 /2,−7 /2��� � �. In this notation, the Feshbach physics
relies on the scattering between the states:

�↑↓� ↔ �↑ �� �1�

where the final closed-channel state is a tightly bound �↑��
dimer. We are interested in a regime near a Feshbach reso-
nance so that the Feshbach-induced interaction is strong. We
will therefore neglect for simplicity the direct s-wave scat-
tering of the open-channel states.

In this section, we will focus on the case where there are
two atoms of the species ↑ and one atom of the species ↓ in
the well. �We will comment on the case of one ↑ and two ↓
atoms at the end of the section.� We will calculate how the
open-channel levels �↑ , ↑ ,↓� �i.e., atoms 1 and 2 are ↑ and
atom 3 is ↓� become coupled together with levels involving a
pair of atoms in the closed channel �↑ , ↑ , ��.

Consider first the states in the open channel in the absence
of Feshbach scattering. Since we are ignoring direct s-wave
scattering in the open channel, atoms in the open-channel
states are noninteracting and they will have a Hamiltonian
hop that consists only of the potential of the harmonic trap
htrap.

We will work in the centre-of-mass frame of this three-
body system because the motion of the centre of mass can be
factored out completely for a single harmonic well. We de-
note the positions of the atoms ↑ , ↑ ,↓ with r�1=r1ẑ, r�2=r2ẑ,
and r�3=r3ẑ, respectively. It is conventional to describe the
relative degrees of freedom of the system using the Jacobi
coordinates: x1=2�r3− �r1+r2� /2� /	3 and x2=r2−r1. We find
that it is more convenient for the evaluation of our formulae
to use a rotated version of these coordinates:

x =
x1 − x2

	2
=

1
	6

�2r3 + �	3 − 1�r1 − �	3 + 1�r2�

y =
x1 + x2

	2
=

1
	6

�2r3 − �	3 + 1�r1 + �	3 − 1�r2� . �2�

The potential of the harmonic trap is separable in these
coordinates:

hop = htrap�x,y� = −
�2

2�
��x

2 + �y
2� +

��2

2
�x2 + y2� �3�

where �=m /2 is the reduced mass for the relative motion of
two atoms. The characteristic length of the oscillations in the
harmonic trap is dr= �� /���1/2 in the centre-of-mass frame.
The eigenstates of this Hamiltonian must have wavefunc-
tions which are antisymmetric under the exchange of two
fermions in the same internal state �↑ �, i.e., under the ex-
change r1↔r2 which corresponds to x↔y. Therefore, the
eigenstates are

�k,l� =
�uk�x,dr�ul�y,dr� − uk�y,dr�ul�x,dr��

	2
�↑ ,↑,↓� �4�

for non-negative integers k� l and

up�s,d� =
e−s2/2d2

��d2�1/4�2pp!�1/2Hp
 s

d
� �5�

with Hp being the Hermite polynomials of order p=0,1 , . . ..
These states have energy �k+ l+1���. Note that Pauli exclu-
sion is enforced in that the wavefunction vanishes unless k
� l.

Having found basis states for the open channel, we can do
the same for the closed channel with atoms 1 and 2 in the ↑
state and atom 3 in the � state. They will have an energy
relative to the open channel of �B which is tunable by an
external magnetic field B. Moreover, there is an additional
attractive interaction Vcl in the closed channel that creates the
�↑�� dimer essential for Feshbach physics. Therefore, the
closed-channel Hamiltonian hcl is given by

hcl = htrap + Vcl�r+� + Vcl�r−� + �B �6�

where r�=r3−r1,2 represent the relative coordinates between
atom 3 �in � state in the closed channel� and each of the other
two ↑ atoms.

To find the eigenstates of this closed-channel Hamiltonian
hcl, it is useful to identify parts of hcl which provide an at-
tractive interaction between one pair of ↑� atoms to form a
dimer while leaving the other ↑ atom as a spectator. Let h+

cl

provide an attraction between atoms 1 and 3, leaving atom 2
as a spectator and h−

cl provide an attraction between atoms 2
and 3, leaving atom 1 as a spectator. These truncated dimer-
spectator Hamiltonians are:

h�
cl = −

�2

2�
��s�

2 + �r�

2 � +
��2

2
�s�

2 + r�
2 � + Vcl�r�� + �B

�7�

where s�= �r1,2+r3−2r2,1� /	3 are proportional to the dis-
tances between the centre of mass of the dimer and the spec-
tator. The eigenstates of these truncated Hamiltonians Eq. �7�
are atom-dimer states of the form un�s� ,dr�	�r� ,dm�. The
first part, un, represents the oscillation in the relative dis-
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placement between the spectator and the dimer with energy
�n+1 /2���+�B. The second part, 	�r� ,dm�, is the wave-
function for the bound state formed due to the attractive in-
teraction Vcl

�−
�2

2�
�r�

2 +
��2

2
r�

2 + Vcl�r��	�r�� = 
b	�r�� �8�

with energy 
b. We cannot solve the bound-state equation in
general. We will simply assume that 	 is a tightly bound
s-wave state much smaller in size than the characteristic trap
oscillation amplitude dr :	�r� ,dm��u0�r� ,dm� with dm�dr.

However, the eigenstates of h�
cl are not exact eigenstates

of the total closed channel because they do not include the
interaction of the spectator atom with the dimer in the state
	. Nevertheless, in the regime of a tightly bound dimer, this
residual atom-dimer interaction is expected to be small due
to Pauli suppression. Suppose that atoms 1 and 3 have
formed a dimer and atom 2 is the ↑ spectator. The un�s+ ,dr�
part of the wavefunctions indicates that atoms 1 and 2 are
separated at a distance of the order of �3n�1/2dr /2. Moreover,
since they are fermions, Pauli exclusion means that their
relative wavefunction must have a node at r1=r3, so that un
remains small until they are separated by a length scale set
by the trap length dr. Since atom 3 stays close to atom 1 in a
tight dimer, this means that atoms 2 and 3 also stay apart at
a distance of the order of dr where the interaction Vcl be-
tween them is weak. Therefore, we can, to a first approxima-
tion, neglect this spectator-dimer interaction so that approxi-
mate eigenstates for the closed-channel Hamiltonian hcl are
antisymmetrized combinations of the two possible spectator-
dimer states

�	n� =
�un�s+,dr�	�r+,dm� − un�s−,dr�	�r−,dm��

	2
�↑ ,↑, ��

�9�

for n=0,1 , . . ., with energies �n+1 /2���+
b+�B.
We can now discuss the full Hamiltonian with Feshbach

scattering between the open and closed channels. The Hamil-
tonian for the three atoms is given �in the centre-of-mass
frame� by:

Ĥ↑↑↓ = ��↑ ,↑,↓� �↑ ,↑, ����hop W

W hcl��↑ ,↑,↓�
�↑ ,↑, �� 

W = ��r+� + ��r−� �10�

where ��r� describes the coupling between the open and
closed channels for two atoms at a distance of r. The eigen-
states of this Hamiltonian Eq. �10� are now superpositions of
the open and closed-channel states:

��↑↑↓� = �
kl

k�l

akl�kl� + �
n

bn�	n� �11�

where the first term represents the three atoms in the open
channel in terms of the basis set Eq. �4� and the second term
represents the atom-dimer states in terms of the basis set Eq.

�9�. An eigenstate with energy E obeys the Schrödinger
equation: H↑↑↓��↑↑↓�=E��↑↑↓�. This requires

1

2�
kl

�klnakl + bn�n + �̄� = Ebn,

�
n

�klnbn + �k + l�akl = Eakl, �12�

where n= �n+1 /2���, �kln= �kl�W�	n� is the Feshbach scat-
tering matrix element, and �̄=�B+
b is a detuning parameter
which sweeps across the Feshbach resonance as a function of
applied magnetic field.

In the absence of the confinement potential, the resonance
occurs when the atom-dimer state of energy 
b+�B coincides
in energy with the zero-momentum scattering state �energy
zero� in the open channel. This corresponds to �̄=0. In the
presence of the harmonic trap, the Feshbach scattering may
cause resonances whenever the open and closed-channel
states are degenerate

�k + l + 1��� = �̄ + �n + 1/2��� �13�

for non-negative integers k , l��k� and n. A nonzero Fesh-
bach coupling will lift the degeneracy and one will find a
level anticrossing in the energy spectrum as a function of �̄.
We will see in Sec. III that there are level crossings allowed
by selection rules.

To simplify our calculation, we can eliminate the open-
channel coefficients akl using the second equation in Eq.
�12�. Then, we obtain a matrix equation for just the atom-
dimer components, bn, of the eigenstate

�E − n�bn + �
m

Mnm�E�bm = �̄bn, �14�

where

Mnm�E� =
1

2�
kl

�kln�klm

k + l − E
. �15�

The matrix Mnm can be interpreted as representing an effec-
tive scattering of the closed-channel state �	m� to �	n� via the
virtual state �kl� in the open channel. We solve Eq. �14� nu-
merically by treating it, at any given E, as a matrix eigen-
value problem for eigenvalue �̄.

We need to evaluate the Feshbach matrix elements �kln.
We will assume that it only occurs when two atoms are close
together at a scale much smaller than the trap length dr. We
see that there are direct and exchange terms in this matrix
element. The direct term involves ��r��	�r� ,dm�. For a
tightly bound dimer in the closed channel, we can reduce this
to an effective delta function coupling between the open and
closed channel �8,20�: ��r�	�r ,dm�→���r�. This leaves � as
a single parameter controlling the strength of the Feshbach
interaction. There is also an exchange term involving
��r��un�s� ,dr�	�r� ,dm�. This term is only large when all
three atoms are very close to each other. These terms can be
neglected due to Pauli suppression by the same argument
that we neglected atom-dimer interactions in the closed
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channel: the range of the Feshbach scattering is much
smaller that the typical separation ��dr� of two atoms in the
same hyperfine state.

With this approximation of a short-ranged Feshbach inter-
action, the matrix elements Mnm�E� can be written in terms
of the Green’s functions of the system

Mnm�E� =
�2

4
� dxdx�dydy��n�x,y��m�x�,y��

� �G�2��x,y ;x�,y�;E� − G�2��x,y ;y�,x�;E��
�16�

where �n=un�s+ ,dr���r+�−un�s− ,dr���r−� and G�2� is the
two-particle Green’s function of noninteracting atoms in a
1D harmonic well

G�2��x,y ;x�,y�;E� = �
kl

uk�x,dr�ul�y,dr�uk�x�,dr�ul�y�,dr�
k + l − E

.

�17�

We notice �12� that the harmonic oscillator Hamiltonian htrap

is invariant under rotations in the x-y plane and that the
�r� ,s�� are both related to �x ,y� by such a rotation:
r�= ��	3�1�x+ �	3�1�y� /2	2 and s�= ��1�	3�x+ �1
�	3�y� /2	2. Therefore, G�2��x ,y ;x�y� ;E�=G�2��r� ,s� ;
r�� ,s�� ;E�. This allows us to express all the integrations in
terms of r and s variables. We find that the matrix elements
Mnm�E� can be written in the final form

Mnm�E� = �2�G�1��0,0;E − n��n,m −� dsG�1�

�
	3s

2
,0;E − n�un
−

s

2
,dr�um�s,dr�� ,

�18�

where G�1� is the single-particle Green’s function
G�1��x ,x� ;E�=�nun�x ,dr�un�x� ,dr� / �n−E�. The advantage
of expressing the matrix in this form is that we know the
quantities we need analytically �21�

G�1��x,0;E� =

�
−
E

��
+

1

2
�

	�dr��
DE/��−1/2
	2�x�

dr
�DE/��−1/2�0� ,

�19�

where D��x� is the parabolic cylinder function with D���y��
=2�/2e−y2/4U�−� /2,1 /2,y2 /2� where U is the confluent hy-
pergeometric function and D��0�=2�/2	� /���1−�� /2�.

The delta functions in the �n�m factors in the form Eq.
�16� indicate which particles are interacting via the Feshbach
scattering. The two G�2� terms comes from the fact the virtual
excitation via an open-channel state involves a direct process
and an exchange process. The direct process gives the first
term in Eq. �18� which requires r+=r3−r1=0 or r−=r3−r2
=0: it involves only the interaction of one pair of atoms
while the third atom remains a spectator. The exchange pro-
cess involves the virtual dissociation of a dimer into ↑ and ↓
atoms in open channel followed by the ↓ atom recombining

with a different ↑ atom to form a new dimer. This gives the
second term in Eq. �18� which is a term present in the three-
body problem but not in a two-body problem.

Before proceeding to discuss our results, we should point
out the difference between �↑ , ↑ ,↓� and �↓ , ↓ ,↑� states. Since
the Feshbach interaction only affects the ↓ state in the open
channel, there is no symmetry under the operation ↑↔↓. The
difference is that, in the ↓↓↑ case, there is no residual inter-
action between the � � � atom in the dimer and the spectator ↓
atom: the closed-channel attraction Vcl only acts on a �↑��
pair. However, we have already dropped this interaction
within our approximation of a tightly bound dimer state.
Therefore, our results should apply also to the ↓↓↑ case.
More explicitly, for the ↓↓↑ case, the Hamiltonian for the
relative degrees of freedom is of the form

H↓↓↑ = V · �hop W+ W−

W+ h+
cl 0

W− 0 h−
cl � · V†. �20�

where W�=��r��, V= ��↓ , ↓ ,↑� �� , ↓ ,↑� �↓ , � ,↑��, and h�
cl

have been defined in Eq. �7�. Now, the wavefunctions

un�s+,dr�	�r+,dm��� ,↓,↑� − un�s−,dr�	�r−,dm��↓ , � ,↑�
�21�

are exact eigenstates of the closed-channel part of the
Hamiltonian.

III. SELECTION RULES

We can take advantage of selection rules for the Feshbach
coupling. In the pseudospin language of ↑ and ↓ states of the
open channel, we are discussing the three-atom states with
Sz=+1 /2. If we completely antisymmetrize the wavefunction
of the three atoms �22�

���1,2,3��A = ���1,2,3�� + ���2,3,1�� + ���3,1,2�� ,

�22�

we can classify the three-atom states as S=3 /2 or 1/2. The
S=3 /2 spin wavefunction is totally symmetric under ex-
change and so its spatial part is totally antisymmetric under
exchange, leading to a node at r3=r1,2. Therefore, this state is
unaffected by the s-wave Feshbach scattering. On the other
hand, the S=1 /2 states have mixed exchange symmetry �see,
for example, �23�� and Feshbach scattering is allowed. To see
this explicitly in our formulation of the problem, we can
write the open-channel part of the Hamiltonian in terms of
the polar coordinates �= �x2+y2�1/2 and �=arctan�y /x�. In
this coordinate system, the energies can be written as �2nr
+ml+1��� with integers nr�0 and ml�0. The S=3 /2 states
correspond to ml=0�mod 3� and these states have zero scat-
tering matrix element to the atom-dimer states. The S=3 /2
state of lowest energy has energy 4��.

In addition to exchange symmetry, we note that the sys-
tem is symmetric under inversion �r1,2,3→−r1,2,3�. This
means that the eigenstates of the system must be even or odd
under inversion. In terms of the matrix Eq. �14�, the solutions
divide into two sectors, one for bn with even n and one for bn
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with odd n. More precisely, the matrix elements �kln are
nonzero only if k+ l and n are both even or both odd.

There are also other matrix elements �kln which vanish
between the open and closed channels: it can be shown that
�kln vanish when n�k+ l. This can be proved using the fact
that �−�

� xre−x2
Hn�x�dx=0 for r�n �26�. In other words,

atom-dimer states with energy �̄+ �n+1 /2��� do not couple
directly to the three-atom states with the relative energy �k
+ l+1��� when n�k+ l, even if they are degenerate �pos-
sible when �̄��� /2�. However, they can be coupled by
multiple Feshbach scattering. Therefore, we expect avoided
level crossings for such levels but the splitting at the anti-
crossing point will be smaller in size than the level splittings
at anticrossing points for levels coupled directly by a non-
zero matrix element �kln. This is because the splitting will be
higher order in �.

IV. TWO-ATOM SYSTEM

In this section, we will outline the results for the Feshbach
resonances of two atoms in a 1D harmonic well. This will be
useful for the discussion of our results for three atoms. These
results are analogous to the 3D results of Diener and Ho �8�.
Our calculation differs from �8� in the lower dimensionality
and also in the fact that we have factored out the motion of
the centre of mass.

In the centre-of-mass frame, the energy for two Feshbach
interacting atoms in a well within the two-channel model is
given by the equation

E − �̄ = −
�2

2��dr

�
1

4
−

E

2��
�

�
3

4
−

E

2��
� . �23�

The lowest-energy solution of this equation has an energy
below �� /2 for any value of the detuning parameter �̄. Since
�� /2 is the lowest energy of the open-channel scattering
states, this corresponds to a bound state. The existence of a
bound state for any �̄ is not unexpected in one dimension.

We can relate our two-channel parameters � and �̄ to the
parameters of a one-channel scattering theory in the absence
of the trap: a1D, the s-wave scattering length, and r1D, the
effective range. These are the physical parameters that can be
found experimentally. This provides the parameters for us to
compare one-channel and two-channel results in the presence
of the trap in Sec. VI. We follow the procedure of Diener and
Ho �8� and examine the bound-state energy of two atoms in
the limit of an infinitely shallow well: �→0 at a constant
negative E. We also need �E���̄ so that the state is clearly
separated from dimer states �energy �̄� in the closed channel.
In this limit, the Eq. �23� becomes

��2

�2�̄
−

��2�E�
�2�̄2 − 
2��E�

�2 �1/2

= 0. �24�

On the other hand, we find that the energy of a weakly bound
state in a homogeneous case with no external confinement is
given by the equation 1 /a1D−�r1D�E� /�2− �2��E� /�2�1/2=0

where �E�=�2�2 / �2�� and �R�1 with R being the range of
the scattering potential. Comparing those two equations, we
find

1/a1D = ��2/�2�̄

r1D = �2/�̄2. �25�

We see that the effective 1D scattering length a1D is propor-
tional to the detuning parameter �̄ in the regime of a weakly
bound state where �E���̄. In terms of the parameters of the
two-channel model, this regime corresponds to a detuning of
�̄� ���4 /2�2�1/3. In other words, we can match the two-
channel parameters to the one-channel scattering parameters
away from the resonance at �̄=0 for positive �̄. Indeed, this
agrees with the work of �7� which showed that the lowest
�bound state� branch of the spectrum exists only for a1D
�0: as a1D→0+ at the resonance, the energy diverges as
−1 /a1D

2 . This behavior is very different to that of Eq. �23� for
the two-channel case in 1D which does not have a divergent
energy at the resonance. This peculiarity is specific to 1D,
and can be traced ultimately to the fact that the effective
potential strength �−1 /a1D and �̄�a1D; while in 3D, the
effective potential strength �a3D and �̄�−1 /a3D, and the
matching using weakly bound states is valid near the reso-
nance at �̄=0 only in 3D.

V. RESULTS FOR THREE ATOMS

We will now discuss our results for the spectrum and
eigenstates of the three-body system. As mentioned already,
we treat the matrix Eq. �14� as an eigenvalue problem for the
detuning parameter �̄ at fixed energies E.

In order to obtain numerical results, we truncate the ma-
trix Eq. �14� by taking into account only atom-dimer energy
levels with n�2nC

. This should properly reproduce the
low-energy behavior of the system for the few lowest atom-
dimer energy levels. Here we choose nC=20. We have
checked that the ground and first-excited states do not
change significantly if we use a higher cutoff nC.

We will discuss two opposite regimes of weak and strong
Feshbach scattering. The kinetic energy of the system is on
the energy scale ��. This should be compared to the magni-
tude of the scattering matrix elements �kln. We note that the
oscillator wavefunctions un�x ,dr� have a magnitude of the
order of dr

−1/2 over a spatial size dr so that �kln�� /dr
1/2.

Therefore, a dimensionless measure for the strength of the
Feshbach scattering is the ratio of these two energy scales

�̃ =
�

��dr
1/2 . �26�

We will consider first the weak-scattering regime, �̃�1,
where the open and closed-channel states are weakly
coupled. Then, we will discuss strong scattering, �̃�1, rel-
evant to 40K atoms �19,24�.

We can also obtain a scale for the range of detuning ��̄
over which the Feshbach scattering significantly affects the
atom-dimer energy levels, as governed by Eq. �14�. This can
be estimated by the scale of the elements of Mnm
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��� /dr
1/2�2 /��. Therefore, a dimensionless measure of the

detuning parameter is �̄��dr /�2. From the results Eq. �25�
for the two-body problem, we see that this is also the ratio of
the effective 1D scattering length, a1D, for states in the open
channel �in the absence of a trap� compared to the trap
oscillation length dr

a1D

dr
=

�̄��dr

�2 �27�

in the regime of a weak two-body bound state.
We present in Fig. 1 our results for the spectrum at �̃

=0.5. We plot the energy in units of �� versus the dimen-
sionless detuning parameter �̄��dr /�2. The selection rules
discussed above are reflected in the energy spectrum as it can
be seen in Fig. 1. The two graphs, �a� and �b�, correspond to
the energy levels for states with even and odd inversion
symmetry.

The S=3 /2 open-channel states which are unaffected by
the Feshbach scattering are found at energies E /��
=4,6 , . . .. At negative detuning and at negative energies, we
see the unperturbed atom-dimer states �	n�, the different di-
agonal lines corresponding to different atom-dimer oscilla-
tions. As we increase �̄, Feshbach interaction with open-
channel states becomes possible near the resonance points
given by Eq. �13�. At the resonances, there are anticrossings
between the three-atom and atom-dimer states. For small �̃,
we can describe each anticrossing approximately by restrict-

ing the matrix Eq. �14� to just the two open and closed levels
near the anticrossing in question. Then, we see immediately
that, for resonances at positive detuning �̄, the size of the
splitting at resonance is of the order of the matrix element
coupling the two states: �kln�� /dr

1/2= �̃��.
However, for resonances at negative �̄, the splittings are

much smaller. As discussed in the Sec. III, these are the
levels which are only coupled through multiple Feshbach
scattering.

We can now turn to the regime of strong Feshbach scat-
tering. Large coupling strength �̃ means much stronger level
anticrossing than for �̃=0.5 case shown in Fig. 1. As an
example, we have calculated the spectrum for �̃=100. �We
will see later that there is very little admixture of high-energy
levels in the lowest-energy eigenstates, justifying our use of
a relatively low cut-off nC.� The six levels with the lowest
energies are shown in Fig. 2. The apparent kink in the high-
est branch in Figs. 2 and 3 is due to the level crossing that
can be better seen for the small �̃ case in Fig. 1. Again, we
see the unperturbed open-channel states at 4�� and 6��
�dashed lines�. Note that the lines corresponding to the un-
perturbed atom-dimer states would be very steep and very
close to the vertical axis on this graph.

We find level crossings in the low-energy spectrum be-
tween these two sets of states with opposite parity under
inversion. This is most easily seen in energy spectrum at
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FIG. 1. Energy levels �in the centre-of-mass frame� versus de-
tuning for three atoms in a harmonic well with s-wave Feshbach
scattering at a dimensionless coupling �̃=0.5. Dashed lines repre-
sent total pseudospin S=3 /2 states which are unaffected by s-wave
Feshbach scattering. Figures �a� and �b� represent eigenstates with
odd and even inversion symmetry, respectively. Grey circles repre-
sent eigenstates in the absence of Feshbach scattering. Black dots
represent S=1 /2 states.
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FIG. 2. Lowest six energy levels at strong Feshbach coupling:
�̃=100. Dashed lines represent total pseudospin S=3 /2 states. Grey
and black dots represent S=1 /2 states with odd and even inversion
symmetry, respectively.
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FIG. 3. Difference between the energy of three atoms in a har-
monic well and the ground-state energy of two atoms in the well
plus the lowest one-atom energy in a separate well. Grey and black
dots represent S=1 /2 states with odd and even inversion symmetry,
respectively.
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weak Feshbach scattering �Fig. 1�. For large positive detun-
ing, the lowest-energy states belong to the odd-parity branch
that gives the open-channel �01� state asymptotically far
away from the resonance ��̄→+��. On the other hand, for
large negative detuning, the states of lowest energy belong to
the even-parity branch that becomes the �	0� atom-dimer
state asymptotically ��̄→−��. Therefore, the two parity
branches must cross as a function of detuning. For weak
Feshbach scattering, the crossing for the lowest two parity
states occurs at a positive detuning, just below E=2��. For
strong Feshbach scattering, we find that these level crossings
have shifted to small negative detuning and negative energies
��̄��dr /�2�−0.07 and E�−9� /dr

1/2 for �̃=100�. Similar
features were found for the spectrum of three atoms in a
harmonic well within a one-channel model in one �16� and
three �12� dimensions. Interestingly, qualitatively similar
level crossings occur also in 1D in absence of the harmonic
trap �25�.

The level crossings between the branches of opposite in-
version symmetry are best seen if we subtract from the three-
body energies �E3� both the ground-state energy of two at-
oms in a well �E2 as given by Eq. �23�� and the energy of one
atom in a separate well ��� /2�. This quantity, E3−E2
−�� /2, is plotted in Fig. 3. The subtraction does not alter the
crossings of the three-body states at any given �̄. In Sec. VII,
we speculate that these crossings may lead to quantum phase
transitions.

This data allows us to discuss the ground state of the
system with three atoms for every two wells. One might ask
whether the Feshbach interaction could generate an attraction
such that there is a regime where the system would prefer to
arrange three atoms in one well and none in the other well.
Such a distribution would have an energy of E3 plus �� /2
for the zero-point motion of the centre of mass. We can also
have two atoms in one well and one atom in the ground state
in the other well. This has energy E2 plus �� /2 for the centre
of mass in one well and �� /2 in the other well. Therefore,
the energy gap between these two states is E3−E2−�� /2.
From Fig. 3, we see that this gap remains positive for all
detunings, suggesting that the ground state of an optical lat-
tice with 3/2 atoms per site to be a phase with uniform den-
sity. This energy gap has a minimum as small as 0.2�� at
�̃=100. This minimum is due to a reduction in E3 compared
to E2 arising from exchange processes which do not occur
for two atoms, as discussed in previous Sec. II after Eq. �19�.
We note that this energy gap is much smaller in magnitude
than the Feshbach energy scale � /dr

1/2 and the individual
energies E3 and E2.

We can similarly ask about the ground state of four atoms
in two wells. The evenly distributed state with two atoms per
well is lower in energy because it contains two binding en-
ergies 2E2 whereas the uneven distribution can only take
advantage of Feshbach physics for one pair of atoms in E3.

Having discussed the energy spectrum of the three-body
system, we will now examine the wavefunctions of the low-
energy eigenstates. The compositions of the ground state and
the first-excited state �for pseudospin S=1 /2� are shown in
Fig. 4. Figures 4�a� and 4�b� present the composition of the
lowest-energy state with an odd/even inversion symmetry. As
expected, the state in Fig. 4�a� becomes the �	1� atom-dimer

level at large negative detuning while it is predominately the
open-channel �0,1� level at large positive detuning. Near the
resonance, there is also a significant admixture of other
open-channel levels and a smaller admixture of other atom-
dimer levels. The most significant components are shown in
the figure. Figure 4�b� gives an example with even inversion
symmetry. The state is asymptotically the �	0� atom-dimer
state at large negative detunings. Closer to the resonance at
negative �̄ there is also a significant �	2� component. For
positive �̄, the dominant contributions are from the �0,2� and
�1,3� open-channel levels with the �1,3� contribution vanish-
ing far from the resonance.

We notice that, while only �	1� dominates in the lowest-
energy state with odd inversion symmetry, both �	0� and �	2�
are significant for the corresponding state with even inver-
sion symmetry particularly near the resonance. This differ-
ence can be traced back to the Feshbach matrix element �kln.
As discussed in Sec. III, the wavefunctions involved should
have similar symmetries to ensure a finite value for �kln.
Thus, using the rules that k� l �Pauli principle� and that k
+ l and n should be both even or both odd with n�k+ l, the
lowest few �kln that contribute to the lowest-energy states are
�011 and �013 for the odd-parity state and �020 and �022 for
the even-parity state. These matrix elements are large only if
the quantum numbers k and l are similar to n and so: ��011�
� ��013� and ��020����022�. In terms of Eq. �14� for the cou-
pling of the closed-channel amplitudes, the magnitude of
M11 is big compared to that of M13 for the odd case, while
both M00 and M02 are significant for the even case. Hence,
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FIG. 4. Ground and first-excited pseudospin S=1 /2 state com-
position as a function of detuning �̄��̃=100�. The probabilities �akl�2
and �bn�2 correspond to open-channel and atom-dimer probabilities,
respectively, �see, the Eq. �11� for definition of akl and bn�. �a�
Lowest-energy state with odd inversion symmetry �lowest gray data
in Fig. 2�. �b� Lowest-energy state with even inversion symmetry
�lowest black data in Fig. 2�.
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both �	0� and �	2� contribute to the lowest-energy even sector
eigenstate in Fig. 4�b�.

These results allow us to understand the validity of our
truncation of the matrix Eq. �16�. We see that the admixture
of high-energy levels is small. This allows us to ignore the
contribution of �	n� levels with n�2nC=40. For comparison,
if we use a smaller cutoff of nC=5 instead of 20, the value of
�̄ at a given E changes by less than 1% and the ratios be-
tween different amplitudes change by less than 10%.

VI. COMPARISON WITH ONE-CHANNEL MODEL

In this paper, we have used a two-channel model for states
near the Feshbach resonance. It is often convenient to use a
one-channel model in which the Feshbach-induced interac-
tion between open-channel states is modelled by a contact
potential: V�r��=g��r��, with a potential strength g that de-
pends on the detuning �7,12�. We discuss now how a one-
channel model may be appropriate for the three-body prob-
lem in a 1D well.

Physically, we expect that an effective model for just the
open channel cannot capture physics involving the details of
the dimer state in the closed channel. Therefore, one-channel
models can approximate the results of two-channel models
only if we focus our attention on scattering states and weakly
bound states, neither of which would have a strong admix-
ture of the closed-channel dimer.

Let us review the results for two atoms in three dimen-
sions. We have been discussing the branch of bound states
induced by Feshbach interaction. The effective interaction
between the atoms close to the resonance can be described
by an effective contact potential with g3D=2��2a3D /�
which diverges as one sweeps the system across the reso-
nance at �̄=0. Without a harmonic trap, the bound states are
weakly bound with a binding energy that vanishes as we
approach the resonance ��̄=0� from negative detuning. In
other words, these eigenstates have only small amplitude in
the closed-channel dimer state. Therefore, the matching to a
one-channel model is best near the resonance in 3D without
confinement. The range of validity of the one-channel model
will be wide if the Feshbach coupling is strong. �There are
also narrow resonances where a one-channel model does not
apply �29� due to the significant admixture of the closed-
channel component.�

These arguments for the wide resonance remain valid in
the presence of a harmonic trap. The admixture of the dimer
component to the low-energy states is very small �8� and the
effective interaction between the atoms close to the reso-
nance can be described by an effective contact potential
�7,12,27,28� which diverges across the resonance at �̄
=�� /2.

We will now turn to the case of one dimension, starting
with two atoms without a trap. We have already studied in
Sec. IV the matching of the two-channel results �for two
atoms without a trap� to one-channel scattering parameters
for the branch of bound states that develops at energies be-
low the open channel. As in our discussion for the 3D case,
we expect the one-channel and two-channel models to con-
verge for weakly bound states. We noted that the most

weakly bound states are found at large positive detuning
away from the resonance, unlike the 3D case where these
states are found at negative �̄ near the resonance. More
quantitatively, the weak-binding condition is that �E�
��2 /2�a1D

2 ��̄. This can be expressed in terms of the di-
mensionless Feshbach and detuning parameters used in our
study Eq. �25�

�̄��dr

�2 �
a1D

dr
�

1

�̃2/3 . �28�

Note that the regime of validity improves at strong coupling
��̃��� so that such a theory may be applicable for realistic
40K systems except very close to the resonance. In terms
of an effective contact potential strength, we have g1D
=−�2 /�a1D �7� so that the regime of validity corresponds to
a weak contact potential which traps a bound state for arbi-
trary weak g1D in one dimension.

We also note that, near the resonance, the one-channel
model �7� gives a negative energy which diverges as a1D
→0+ while the two-channel model �23� does not show a
divergence as �̄→0+. Indeed, the bound-state energy is finite
as a1D �and detuning �̄� changes sign, approaching the dimer
energy �̄ for large negative a1D. This fundamental difference
between the one-channel and two-channel models remains
even if we refine our treatment of the closed channel.

We will now turn to our three-atom results. The conclu-
sions above about the regime of validity of the one-channel
approximation for the two-body problem remain true for our
three-body results. We can examine directly the degree of the
admixture of open- and closed-channel components as a
function of detuning. At large negative detuning, the states
illustrated in Fig. 4 are predominantly the closed-channel
atom-dimer state and so should have no relation to any
model based on open-channel states. The change in the bal-
ance between open- and closed-channel components as a
function of increasing detuning is clearly seen in Fig. 4. In-
deed, in our 1D system, there is a significant admixture of
the atom-dimer levels close to the resonance even for strong
coupling between the open and closed channels ��̃�1�.
Therefore, we conclude that the system cannot be modeled
by a one-channel theory close to the resonance. On the other
hand, for large positive detuning, the states are predomi-
nantly open-channel states and so can be modeled in an ef-
fective theory for the open-channel states.

Furthermore, we have performed a one-channel calcula-
tion for three atoms in a well for our system using an effec-
tive g1D �30�, following an analogous study for the 3D prob-
lem �12�. From Fig. 5, we see that the energies calculated for
the lowest branch of eigenstates agree in the one-channel and
two-channel models at large positive detuning, but they dif-
fer significantly close to the resonance.

Interestingly, we find that the energy difference E3−E2 are
very similar in the one-channel and two-channel models for
the whole range of positive detuning at �̃=100.

VII. SUMMARY AND DISCUSSION

We have considered two species of fermionic 40K atoms
at ultracold temperatures trapped in a 1D optical lattice and
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close to an interspecies Feshbach resonance. We have con-
centrated on the zero-tunneling limit in which the dynamics
of the system is well described by the local spectrum of
atoms at a lattice site. The calculations are performed within
the two-channel model for two and three atoms at a lattice
site approximated by a harmonic well.

Close to the resonance, we find a significant admixture of
the atom-dimer states to the lowest-energy eigenstates of the
system. Consequently, the one- and two-channel models
must differ close to the resonance for our 1D system since a
one-channel theory cannot capture the physics of the dimer
state.

The results suggest that the ground state is a state with
uniform atom density. In particular, for three atoms in two
wells, we compared the energy of all three atoms in one well
�3+0� to the energy of two atoms in one well and one atom
in the other �2+1�. The energy difference can be as small as
0.2�� at �̃=100 which is much smaller than the Feshbach
energy scale. However, we note that, for the Sz=+1 /2 case,
we have neglected the residual interaction between the atom
and dimer in a �	n� state. There is an attractive component
from the closed-channel potential Vcl and also a Feshbach
scattering term, both of which we argued to be suppressed by
fermionic statistics. We can ask whether these additional
terms may significantly reduce or even change the sign of
the energy difference between 2+1 and 3+0 configurations.
In other words, we ask whether there is an instability to a

density wave in an optical lattice with a filling close to 3/2
atoms per site.

To obtain a quantitative analysis for such a scenario, we
would require a detailed short-distance description of the
dimer state. Here, we will limit ourselves to a rough estimate
for the lowest-energy state at positive detuning by consider-
ing the probability that the spectator atom can be in the vi-
cinity of the dimer.

This state has odd inversion symmetry and the amplitude
for the two atoms �r1 and r2� to approach each other is pro-
portional to �r1−r2� /dr

1/2. So, the probability for the spectator
to be in the vicinity of a dimer of size dm is proportional to
�dm�r /dr�2dr /dr��dm /dr�3. We estimate the residual attrac-
tion 
ad between the atom and the dimer would be of the
order of V̄�dm /dr�3 where V̄ is a measure of the strength Vcl

experienced by the closed-channel dimer, e.g., the minimum
value of the potential. As mentioned above, the minimum
energy gap in E3−E2−�� /2 is only a fraction of ��. There-

fore, if V̄ is sufficiently large compared to ��, there is a
possibility that this additional attraction can favour the 3+0
configuration compared to the 2+1 configuration in two
wells. �A similar term in the Feshbach scattering can be ab-
sorbed into a renormalized scattering strength �, but our re-
sults are not sensitive to the value of � in this regime of large
�̃.� In fact, the even-symmetry state has a similar but larger

correction of V̄dm /dr which could change the ordering in
energy of the even and odd branches over a range of detun-
ing. These speculations need to be confirmed by further
work.

Note that these hypothetical scenarios rely on the residual
interaction between an ↑ atom �but not a ↓ atom� with a
dimer in the state �↑��. In other words, such a scenario would
reveal the asymmetry of the system under the transformation
↑↔↓. It would only be a possibility if we have more atoms
in the ↑ open-channel state than in the ↓ state. The magnitude
of this effect depends on the ratio of the size of the dimer in
the closed channel compared to the trap size and therefore
depends on the details of the actual Feshbach resonance.

Finally, we discuss briefly the optical lattice with weak
tunneling between a set of wells. Consider the case with
three atoms per site on average. From the level crossing we
found in Fig. 3, we see that the ground state would consist of
states with odd or even inversion symmetry within each site
depending on the detuning parameter. As we sweep past this
crossing, this may be a first-order transition. However, it is
also possible that a continuous quantum phase transition
would occur because an intersite tunnelling would couple the
states of different inversion symmetries. We need to investi-
gate collective quantum fluctuations to study this possibility.
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