3,686 research outputs found

    About the magnetic fluctuation effect on the phase transition to superconducting state in Al

    Full text link
    The free energy and the order parameter profile near the phase transition to the superconducting state in bulk Al samples are calculated within a mean-field-like approximation. The results are compared with those for thin films.Comment: 11 pages, miktex, 2 figure

    Magneto-mechanical interplay in spin-polarized point contacts

    Full text link
    We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak, i.e. the magnetic state has little effect on the structural relaxation at equilibrium or under non-equilibrium, current-carrying conditions.Comment: 5 pages, 4 figure

    Automatic Generation of Matrix Element Derivatives for Tight Binding Models

    Full text link
    Tight binding (TB) models are one approach to the quantum mechanical many particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to simulations of the dynamics of a system, also derivatives of matrix elements can appear. In this work we give general expressions for first and second derivatives of such matrix elements. Implemented in a computer program they obviate the need to type all the required derivatives of all occuring matrix elements by hand.Comment: 11 pages, 2 figure

    Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics

    Get PDF
    Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested
    • …
    corecore