2,531 research outputs found

    Effects of early musical experience on auditory sequence memory

    Get PDF
    The present study investigated a possible link between musical training and immediate memory span by testing experienced musicians and three groups of musically inexperienced subjects (gymnasts, Psychology 101 students, and video game players) on sequence memory and word familiarity tasks. By including skilled gymnasts who began studying their craft by age six, video game players, and Psychology 101 students as comparison groups, we attempted to control for some of the ways skilled musicians may differ from participants drawn from the general population in terms of gross motor skills and intensive experience in a highly skilled domain from an early age. We found that musicians displayed longer immediate memory spans than the comparison groups on auditory presentation conditions of the sequence reproductive span task. No differences were observed between the four groups on the visual conditions of the sequence memory task. These results provide additional converging support to recent findings showing that early musical experience and activity-dependent learning may selectively affect verbal rehearsal processes and the allocation of attention in sequence memory tasks

    A new neurosurgical tool incorporating differential geometry and cellular automata techniques

    Get PDF
    Using optical coherence imaging, it is possible to visualize seizure progression intraoperatively. However, it is difficult to pinpoint an exact epileptic focus. This is crucial in attempts to minimize the amount of resection necessary during surgical therapeutic interventions for epilepsy and is typically done approximately from visual inspection of optical coherence imaging stills. In this paper, we create an algorithm with the potential to pinpoint the source of a seizure from an optical coherence imaging still. To accomplish this, a grid is overlaid on optical coherence imaging stills. This then serves as a grid for a two-dimensional cellular automation. Each cell is associated with a Riemannian curvature tensor representing the curvature of the brain's surface in all directions for a cell. Cells which overlay portions of the image which show neurons that are firing are considered "depolarized"

    Factors influencing Hen Harrier Circus cyaneus territory site selection and breeding success

    Get PDF
    Capsule: Our findings regarding Hen Harrier Circus cyaneus territory site selection and breeding success in Ireland offer an opportunity for the development of initiatives and conservation actions aimed at enhancing the suitability of upland areas for breeding Hen Harriers and ensuring the long-term persistence of the species.Aims: To investigate landscape-scale associations between habitat composition and Hen Harrier territory site selection, and to explore the influence of habitat and climate on breeding success.Methods: We used multi-model inference from generalized linear models and Euclidean distance analyses to explore the influence of habitat, topographic, anthropogenic and climatic factors on Hen Harrier territory selection and breeding success in Ireland, based on data from national breeding surveys in 2010 and 2015.Results: Hen Harrier territories were associated with heath/shrub, bog and pre-thicket coniferous forests. Comparisons between territories and randomly generated pseudo-absences (upland and lowland) showed that breeding pairs preferentially select for these habitats. Breeding success was negatively influenced by rainfall early in the breeding season and by climatic instability, and was positively influenced by the presence of heath/shrub and bog.Conclusions: The results suggest that Hen Harrier breeding success is compromised by the synergistic effects of climate, landscape composition and management. Effective conservation of Hen Harriers in Ireland will therefore rely on landscape-scale initiatives

    Optimising EEG-fMRI for Localisation of Focal Epilepsy in Children

    Get PDF
    BACKGROUND: Early surgical intervention in children with drug resistant epilepsy has benefits but requires using tolerable and minimally invasive tests. EEG-fMRI studies have demonstrated good sensitivity for the localization of epileptic focus but a poor yield although the reasons for this have not been systematically addressed. While adults EEG-fMRI studies are performed in the "resting state"; children are commonly sedated however, this has associated risks and potential confounds. In this study, we assessed the impact of the following factors on the tolerability and results of EEG-fMRI in children: viewing a movie inside the scanner; movement; occurrence of interictal epileptiform discharges (IED); scan duration and design efficiency. This work's motivation is to optimize EEG-fMRI parameters to make this test widely available to paediatric population. METHODS: Forty-six children with focal epilepsy and 20 controls (6-18) underwent EEG-fMRI. For two 10 minutes sessions subjects were told to lie still with eyes closed, as it is classically performed in adult studies ("rest sessions"), for another two sessions, subjects watched a child friendly stimulation i.e. movie ("movie sessions"). IED were mapped with EEG-fMRI for each session and across sessions. The resulting maps were classified as concordant/discordant with the presumed epileptogenic focus for each subject. FINDINGS: Movement increased with scan duration, but the movie reduced movement by ~40% when played within the first 20 minutes. There was no effect of movie on the occurrence of IED, nor in the concordance of the test. Ability of EEG-fMRI to map the epileptogenic region was similar for the 20 and 40 minute scan durations. Design efficiency was predictive of concordance. CONCLUSIONS: A child friendly natural stimulus improves the tolerability of EEG-fMRI and reduces in-scanner movement without having an effect on IED occurrence and quality of EEG-fMRI maps. This allowed us to scan children as young as 6 and obtain localising information without sedation. Our data suggest that ~20 minutes is the optimal length of scanning for EEG-fMRI studies in children with frequent IED. The efficiency of the fMRI design derived from spontaneous IED generation is an important factor for producing concordant results

    Homology of Distributive Lattices

    Full text link
    We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semi-lattices, lattices and skew lattices. For every such a structure we define multi-term distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles and conjecture the general formula for semi-lattices and some skew lattices. Then we propose a generalization of a lattice as a set with a number of idempotent operations satisfying the absorption law.Comment: 30 pages, 3 tables, 3 figure

    Academic freedom in Europe: time for a Magna Charta?

    Get PDF
    This paper is a preliminary attempt to establish a working definition of academic freedom for the European Union states. The paper details why such a definition is required for the European Union and then examines some of the difficulties of defining academic freedom. By drawing upon experience of the legal difficulties beset by the concept in the USA and building on previous analyses of constitutional and legislative protection for academic freedom, and of legal regulations concerning institutional governance and academic tenure, a working definition of academic freedom is then derived. The resultant definition which, it is suggested, could form the basis for a European Magna Charta Libertatis Academicae, goes beyond traditional discussions of academic freedom by specifying not only the rights inherent in the concept but also its accompanying duties, necessary limitations and safeguards. The paper concludes with proposals for how the definition might be tested and carried forward

    Effect of Loading Method on a Peptide Substrate Reporter in Intact Cells [post-print]

    Get PDF
    Studies of live cells often require loading of exogenous molecules through the cell membrane; however, effects of loading method on experimental results are poorly understood. Therefore, in this work, we compared three methods for loading a fluorescently labeled peptide into cells of the model organism Dictyostelium discoideum. We optimized loading by pinocytosis, electroporation, and myristoylation to maximize cell viability and characterized loading efficiency, localization, and uniformity. We also determined how the loading method affected measurements of enzyme activity on the peptide substrate reporter using capillary electrophoresis. Loading method had a strong effect on the stability and phosphorylation of the peptide. The half-life of the intact peptide in cells was 19 ± 2, 53 ± 15, and 12 ± 1 min, for pinocytosis, electroporation, and myristoylation, respectively. The peptide was phosphorylated only in cells loaded by electroporation. Fluorescence microscopy suggested that the differences between methods were likely due to differences in peptide localization

    Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model

    Get PDF
    Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. \noindent The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. \noindent The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded as separate file
    corecore