424 research outputs found

    Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model

    Full text link
    We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral BB, DD, and KK meson systems.Comment: 16 pages, LaTeX + embedded PicTeX figures requiring prepictex, pictex, and postpictex inputs. HUTP.STY include

    The structure of electroweak corrections due to extended gauge symmetries

    Get PDF
    This paper studies models with extended electroweak gauge sectors of the form SU(2) x SU(2) x U(1) x [SU(2) or U(1)]. We establish the general behavior of corrections to precision electroweak observables in this class of theories and connect our results to previous work on specific models whose electroweak sectors are special cases of our extended group.Comment: 18 pages, 2 figures; added a referenc

    Effective Field Theory of Vacuum Tilting

    Full text link
    Simple models of topcolor and topcolor-assisted technicolor rely on a relatively strong U(1) gauge interaction to ``tilt'' the vacuum. This tilting is necessary to produce a top-condensate, thereby naturally obtaining a heavy top-quark, and to avoid producing a bottom-condensate. We identify some peculiarities of the Nambu-Jona-Lasinio approximation often used to analyze the topcolor dynamics. We resolve these puzzles by constructing the low-energy effective field theory appropriate to a mass-independent renormalization scheme. We construct the power-counting rules for such an effective theory. By requiring that the Landau pole associated with the U(1) gauge theory be sufficiently above the topcolor gauge boson scale, we derive an upper bound on the strength of the U(1) gauge-coupling evaluated at the topcolor scale. The upper bound on the U(1) coupling implies that these interactions can shift the composite Higgs boson mass-squared by only a few per cent and, therefore, that the topcolor coupling must be adjusted to equal the critical value for chiral symmetry breaking to within a few per cent.Comment: 15 pages, LaTeX and Pictex. Minor comments and references added to clarify relation of current work to previous work on composite Higgs model

    Finding Z' bosons coupled preferentially to the third family at CERN LEP and the Fermilab Tevatron

    Get PDF
    Z' bosons that couple preferentially to the third generation fermions can arise in models with extended weak (SU(2)xSU(2)) or hypercharge (U(1)xU(1)) gauge groups. We show that existing limits on quark-lepton compositeness set by the LEP and Tevatron experiments translate into lower bounds of order a few hundred GeV on the masses of these Z' bosons. Resonances of this mass can be directly produced at the Tevatron. Accordingly, we explore in detail the limits that can be set at Run II using the process p pbar -> Z' -> tau tau -> e mu. We also comment on the possibility of using hadronically-decaying taus to improve the limits.Comment: LaTeX2e, 24 pages (including title page), 13 figures; version 2: corrected typographical errors and bad figure placement; version 3: added references and updated introduction; version 4: changes to compensate for old latex version on arXiv server; version 5: additional references, and embedded fonts in eps files for PRD; version 6: corrected some minor typos to address PRD referee's comment

    A Comment on the Zero Temperature Chiral Phase Transition in SU(N)SU(N) Gauge Theories

    Full text link
    Recently Appelquist, Terning, and Wijewardhana investigated the zero temperature chiral phase transition in SU(N) gauge theory as the number of fermions N_f is varied. They argued that there is a critical number of fermions N^c_f, above which there is no chiral symmetry breaking and below which chiral symmetry breaking and confinement set in. They further argued that that the transition is not second order even though the order parameter for chiral symmetry breaking vanishes continuously as N_f approaches N^c_f on the broken side. In this note I propose a simple physical picture for the spectrum of states as N_f approaches N^c_f from below (i.e. on the broken side) and argue that this picture predicts very different and non-universal behavior than is the case in an ordinary second order phase transition. In this way the transition can be continuous without behaving conventionally. I further argue that this feature results from the (presumed) existence of an infrared Banks-Zaks fixed point of the gauge coupling in the neighborhood of the chiral transition and therefore depends on the long-distance nature of the non-abelian gauge force.Comment: 7 pages, 2 figure

    Critical Constraints on Chiral Hierarchies

    Get PDF
    We consider the constraints that critical dynamics places on models with a top quark condensate or strong extended technicolor (ETC). These models require that chiral-symmetry-breaking dynamics at a high energy scale plays a significant role in electroweak symmetry breaking. In order for there to be a large hierarchy between the scale of the high energy dynamics and the weak scale, the high energy theory must have a second order chiral phase transition. If the transition is second order, then close to the transition the theory may be described in terms of a low-energy effective Lagrangian with composite ``Higgs'' scalars. However, scalar theories in which there are more than one Ί4\Phi^4 coupling can have a {\it first order} phase transition instead, due to the Coleman-Weinberg instability. Therefore, top-condensate or strong ETC theories in which the composite scalars have more than one Ί4\Phi^4 coupling cannot always support a large hierarchy. In particular, if the Nambu--Jona-Lasinio model solved in the large-NcN_c limit is a good approximation to the high-energy dynamics, then these models will not produce acceptable electroweak symmetry breaking.Comment: 10 pages, 1 postscript figure (appended), BUHEP-92-35, HUTP-92/A05

    Zero Temperature Chiral Phase Transition in (2+1)-Dimensional QED with a Chern-Simons Term

    Get PDF
    We investigate the zero temperature chiral phase transition in (2+1)-dimensional QED in the presence of a Chern-Simons term, changing the number of fermion flavors. In the symmetric phase, there are no light degrees of freedom even at the critical point. Unlike the case without a Chern-Simons term, the phase transition is first-order.Comment: 7 pages, RevTeX, no figure

    Limits on a Composite Higgs Boson

    Get PDF
    Precision electroweak data are generally believed to constrain the Higgs boson mass to lie below approximately 190 GeV at 95% confidence level. The standard Higgs model is, however, trivial and can only be an effective field theory valid below some high energy scale characteristic of the underlying non-trivial physics. Corrections to the custodial isospin violating parameter T arising from interactions at this higher energy scale dramatically enlarge the allowed range of Higgs mass. We perform a fit to precision electroweak data and determine the region in the (m_H, Delta T) plane that is consistent with experimental results. Overlaying the estimated size of corrections to T arising from the underlying dynamics, we find that a Higgs mass up to 500 GeV is allowed. We review two composite Higgs models which can realize the possibility of a phenomenologically acceptable heavy Higgs boson. We comment on the potential of improvements in the measurements of m_t and M_W to improve constraints on composite Higgs models.Comment: 9 pages, 2 eps figures. Shortened for PRL; some references elminate

    Moose models with vanishing SS parameter

    Full text link
    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the SS parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on KK SU(2) gauge groups, K+1K+1 chiral fields and electroweak groups SU(2)LSU(2)_L and U(1)YU(1)_Y at the ends of the chain of the moose. SS vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical non local field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of SS through an exponential behavior of the link couplings as suggested by Randall Sundrum metric.Comment: LaTex file, 27 pages, 8 figure

    Coloron Phenomenology

    Get PDF
    A flavor-universal extension of the strong interactions was recently proposed in response to the apparent excess of high-ETE_T jets in the inclusive jet spectrum measured at the Tevatron. This paper studies the color octet of massive gauge bosons (`colorons') that is present in the low-energy spectrum of the model's Higgs phase. Constraints from searches for new particles decaying to dijets and from measurements of the weak-interaction ρ\rho parameter imply that the colorons must have masses greater than 870-1000 GeV. The implications of recent Tevatron data and the prospective input from future experiments are also discussed.Comment: 13 pages, 4 embedded Postscript figures, LaTeX, full postscript version also available at http://smyrd.bu.edu/htfigs/htfigs.html rectified confusing phrase at end of sub-section on 'dijets
    • 

    corecore