2,655 research outputs found

    A decomposition algorithm for feedback min-max model predictive control

    Get PDF
    Abstract-An algorithm for solving feedback min-max model predictive control for discrete time uncertain linear systems with constraints is presented in the paper. The algorithm solves the corresponding multi-stage min-max linear optimization problem. It is based on applying recursively a decomposition technique to solve the min-max problem via a sequence of low complexity linear programs. It is proved that the algorithm converges to the optimal solution in finite time. Simulation results are provided to compare the proposed algorithm with other approaches

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure

    Moments of the neutron g2g_2 structure function at intermediate Q2Q^2

    Full text link
    We present new experimental results of the 3^3He spin structure function g2g_2 in the resonance region at Q2Q^2 values between 1.2 and 3.0 (GeV/c)2^2. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron d2d_2 matrix element, was found to be small at =2.4 (GeV/c)2^2 and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3^3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low xx unmeasured region. A small deviation was observed at Q2Q^2 values between 0.5 and 1.2 (GeV/c)2^2 for the neutron

    Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero

    Induced polarization of {\Lambda}(1116) in kaon electroproduction

    Full text link
    We have measured the induced polarization of the Λ(1116){\Lambda}(1116) in the reaction epeK+Λep\rightarrow e'K^+{\Lambda}, detecting the scattered ee' and K+K^+ in the final state along with the proton from the decay Λpπ\Lambda\rightarrow p\pi^-.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy WW (1.6W2.71.6\leq W \leq 2.7 GeV) and covered the full range of the kaon production angle at an average momentum transfer Q2=1.90Q^2=1.90 GeV2^2.In this experiment a 5.50 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. We have mapped out the WW and kaon production angle dependencies of the induced polarization and found striking differences from photoproduction data over most of the kinematic range studied. However, we also found that the induced polarization is essentially Q2Q^2 independent in our kinematic domain, suggesting that somewhere below the Q2Q^2 covered here there must be a strong Q2Q^2 dependence. Along with previously published photo- and electroproduction cross sections and polarization observables, these data are needed for the development of models, such as effective field theories, and as input to coupled-channel analyses that can provide evidence of previously unobserved ss-channel resonances.Comment: 13 figure

    Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region

    Get PDF
    We report the first beam-target double-polarization asymmetries in the γ þ nðpÞ → π− þ pðpÞ reaction spanning the nucleon resonance region from invariant mass W ¼ 1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γnN* resonance photocouplings

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu

    Transverse Polarization of Σ+(1189)\Sigma^{+}(1189) in Photoproduction on a Hydrogen Target in CLAS

    Full text link
    Experimental results on the Σ+(1189)\Sigma^+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The Σ+(1189)\Sigma^+(1189) was reconstructed in the exclusive reaction γ+pKS0+Σ+(1189)\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189) via the Σ+pπ0\Sigma^{+} \to p \pi^{0} decay mode. The KS0K^{0}_S was reconstructed in the invariant mass of two oppositely charged pions with the π0\pi^0 identified in the missing mass of the detected pπ+πp\pi^+\pi^- final state. Experimental data were collected in the photon energy range EγE_{\gamma} = 1.0-3.5 GeV (s\sqrt{s} range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.Comment: pages 1
    corecore