82 research outputs found

    Comparison of surrogate measures for the reliability and redundancy of water distribution systems

    Get PDF
    An investigation into the effectiveness of surrogate measures for the hydraulic reliability and/or redundancy of water distribution systems is presented. The measures considered are statistical flow entropy, resilience index, network resilience and surplus power factor. Looped network designs that are maximally noncommittal to the surrogate reliability measures were considered. In other words, the networks were designed by multi-objective evolutionary optimization free of any influence from the surrogate measures. The designs were then assessed using each surrogate measure and two accurate but computationally intensive measures namely hydraulic reliability and pipe-failure tolerance. The results indicate that by utilising statistical flow entropy, the reliability of the network can be reasonably approximated, with substantial savings in computational effort. The results for the other surrogate measures were often inconsistent. Two networks in the literature were considered. One example involved a range of alternative network topologies. In the other example, based on whole-life cost accounting, alternative design and upgrading schemes for a 20-year design horizon were considered. Pressure-dependent hydraulic modelling was used to simulate pipe failures for the reliability calculations

    Self-adaptive solution-space reduction algorithm for multi-objective evolutionary design optimization of water distribution networks

    Get PDF
    An effective way to improve the computational efficiency of evolutionary algorithms is to make the solution space of the optimization problem under consideration smaller. A new reliability-based algorithm that does this was developed for water distribution networks. The objectives considered in the formulation of the optimization problem were minimization of the initial construction cost and maximization of the flow entropy as a resilience surrogate. After achieving feasible solutions, the active solution space of the optimization problem was re-set for each pipe in each generation until the end of the optimization. The algorithm re-set the active solution space by reducing the number of pipe diameter options for each pipe, based on the most likely flow distribution. The main components of the methodology included an optimizer, a hydraulic simulator and an algorithm that calculates the flow entropy for any given network configuration. The methodology developed is generic and self-adaptive, and prior setting of the reduced solution space is not required. A benchmark network in the literature was investigated, and the results showed that the algorithm improved the computational efficiency and quality of the solutions achieved by a considerable margin

    Joint entropy and multi-objective evolutionary optimization of water distribution networks

    Get PDF
    It is essential to consider resilience when designing any water distribution network and surrogate measures of resilience are used frequently as accurate measures often impose prohibitive computational demands in optimization algorithms. Previous design optimization algorithms based on flow entropy have essentially employed a single loading condition because the flow entropy concept formally has not been extended to multiple loading conditions in water distribution networks. However, in practice, water distribution networks must satisfy multiple loading conditions. The aim of the research was to close the gap between the prevailing entropy-based design optimization approaches based on one loading condition essentially and water distribution practice that must address multiple loading conditions. A methodology was developed and applied to a real-world water distribution network in the literature, based on the concept of the joint entropy of independent probability schemes. The results demonstrated that the critical loading conditions were design specific. In other words, the critical loading and operating conditions cannot readily be determined beforehand. Consequently, maximizing the joint entropy provided the most consistently competitive solutions in terms of the balance between cost and resilience. The results were derived using a penalty-free genetic algorithm with three objectives. Compared to previous research using flow entropy based on a single loading condition and two objectives, there was a substantial increase of 274% in the number of non-dominated solutions achieved

    Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions

    Get PDF
    The informational entropy model for flow networks was formulated over 30 years ago by Tanyimboh and Templeman (University of Liverpool, UK) for a single discrete operating condition that typically comprises the maximum daily demands and was undefined for water distribution networks (WDNs) under multiple operating conditions. Its extension to include multiple independent discrete operating conditions was investigated experimentally herein considering the relationships between flow entropy and hydraulic capacity reliability and redundancy. A novel penalty-free multi-objective genetic algorithm was developed to minimize the initial construction cost and maximize the flow entropy subject to the design constraints. Furthermore, optimized designs derived from the maximum daily demands as a single discrete operating condition were compared to those derived from a combination of discrete operating conditions. Optimized designs from a combination of discrete operating conditions outperformed those from a single operating condition in terms of performance and initial construction cost. The best results overall were achieved by maximizing the sum of the flow entropies of the discrete operating conditions. The logical inference from the results is that the flow entropy of multiple discrete operating conditions is the sum of their respective entropies. In addition, a crucial property of the resulting flow entropy model is that it is bias free with respect to the individual operating conditions; hitherto a fundamental weakness concerning the practical application of the flow entropy model to WDNs is thus addressed

    Venous aneurysm as a clinical problem. General and local complications

    Get PDF
    Venous system aneurysms appear relatively rarely and are diagnosed even less frequently, especiallyif asymptomatic. Asymptomatic aneurysms are detected during duplex-Doppler studies. Symptomaticaneurysms are often life-threatening. The first part of this paper presents a literature review of this rare disease, and the second part presentsa the material of the cochort of 5 patients underwent surgical treatment due to venous aneurysm and itscomplications. There is no clear standard of treatment for venous aneurysms. The main reasons for this are relativelylow epidemiology, diversity of locations, difficulty in establishing primary and secondary aetiologies,anatomical structure, and the coexistence of concomitant diseases. Given the numerous uncertainties,several factors should be considered when deciding the next steps in treatment

    In vitro and in vivo studies on biocompatibility of carbon fibres

    Get PDF
    In the present study we focused on the in vitro and in vivo evaluation of two types of carbon fibres (CFs): hydroxyapatite modified carbon fibres and porous carbon fibres. Porous CFs used as scaffold for tissues regeneration could simultaneously serve as a support for drug delivery or biologically active agents which would stimulate the tissue growth; while addition of nanohydroxyapatite to CFs precursor can modify their biological properties (such as bioactivity) without subsequent surface modifications, making the process cost and time effective. Presented results indicated that fibre modification with HAp promoted formation of apatite on the fibre surface during incubation in simulated body fluid. The materials biocompatibility was determined by culturing human osteoblast-like cells of the line MG 63 in contact with both types of CFs. Both tested materials gave good support to adhesion and growth of bone-derived cells. Materials were implanted into the skeletal rat muscle and a comparative analysis of tissue reaction to the presence of the two types of CFs was done. Activities of marker metabolic enzymes: cytochrome c oxidase (CCO) and acid phosphatase were examined to estimate the effect of implants on the metabolic state of surrounding tissues. Presented results evidence the biocompatibility of porous CFs and activity that stimulates the growth of connective tissues. In case of CFs modified with hydroxyapatite the time of inflammatory reaction was shorter than in case of traditional CFs

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    Incidence and Tracking of Escherichia coli O157:H7 in a Major Produce Production Region in California

    Get PDF
    Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995–2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations of possible sources of pre-harvest contamination on implicated farms in the Salinas and San Juan valleys of California, and a survey of the Salinas watershed. EcO157 was isolated at least once from 15 of 22 different watershed sites over a 19 month period. The incidence of EcO157 increased significantly when heavy rain caused an increased flow rate in the rivers. Approximately 1000 EcO157 isolates obtained from cultures of>100 individual samples were typed using Multi-Locus Variable-number-tandem-repeat Analysis (MLVA) to assist in identifying potential fate and transport of EcO157 in this region. A subset of these environmental isolates were typed by Pulse Field Gel Electrophoresis (PFGE) in order to make comparisons with human clinical isolates associated with outbreak and sporadic illness. Recurrence of identical and closely related EcO157 strains from specific locations in the Salinas and San Juan valleys suggests that transport of the pathogen is usually restricted. In a preliminary study, EcO157 was detected in water at multiple locations in a low-flow creek only within 135 meters of a point source. However, possible transport up to 32 km was detected during periods of higher water flow associated with flooding. During the 2006 baby spinach outbreak investigation, transport was also detected where water was unlikely to be involved. These results indicate that contamination of the environment is a dynamic process involving multiple sources and methods of transport. Intensive studies of the sources, incidence, fate and transport of EcO157 near produce production are required to determine the mechanisms of pre-harvest contamination and potential risks for human illness
    corecore