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Abstract An effective way to improve the computational efficiency of evolutionary algorithms is

to make the solution space of the optimization problem under consideration smaller. A new

reliability-based algorithm that does this was developed for water distribution networks. The

objectives considered in the formulation of the optimization problem were minimization of the

initial construction cost and maximization of the flow entropy as a resilience surrogate. After

achieving feasible solutions, the active solution space of the optimization problem was re-set for

each pipe in each generation until the end of the optimization. The algorithm re-sets the active

solution space by reducing the number of pipe diameter options for each pipe, based on the most

likely flow distribution. The main components of the methodology include an optimizer, a

hydraulic simulator and an algorithm that calculates the flow entropy for any given network

configuration. The methodology developed is generic and self-adaptive, and prior setting of the

reduced solution space is not required. A benchmark network in the literature was investigated, and

the results showed that the algorithm improved the computational efficiency and quality of the

solutions achieved by a considerable margin.
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1 Introduction

Genetic algorithms are a class of population-based approaches that can search different regions

in the solution space of an optimization problem simultaneously. They are therefore well suited

to complex multi-objective optimization problems. Various multi-objective evolutionary opti-

mization algorithms have been developed in the last three decades. Gen et al. (2008) grouped

multi-objective evolutionary algorithms (MOEAs) based on fitness assignment while Deb

(2001) classified them as non-elitist and elitist. Elitism is important as it helps to achieve better

convergence and ensure the fittest candidates are not lost even if they are achieved at an early

stage in the optimization (Zitzler et al. 2000).

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer 1985), Vector Optimized Evolution

Strategy (Kursawe 1990), Multi-Objective Genetic Algorithm (MOGA) (Fonseca and Fleming

1993), Weight Based Genetic Algorithm (Hajela and Lin 1992), Nondominated Sorting

Genetic Algorithm (NSGA) (Srinivas and Deb 1994) are examples of non-elitist evolutionary

algorithms. Examples of elitist MOEAs include Nondominated Sorting Genetic Algorithm

(NSGA) II (Deb et al. 2002), Distance Based Pareto Genetic Algorithm (Osyczka and Kundu

1995), Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1998) and Pareto-

Archive Evolution Strategy (PAES) (Knowles and Corne 2000).

Deb et al. (2002) proposed Nondominated Sorting Genetic Algorithm (NSGA) II. NSGA II

includes elitism and preserves diversity among the nondominated solutions based on the

crowding distance. Solutions that have relatively large crowding distance values occupy less

crowded regions of the solution space and preserving such solutions results in better diversity.

Comparisons of NSGA II and other evolutionary algorithms are available in the literature. For

example, Deb et al. (2002) assessed NSGA II, PAES and SPEA on nine difficult problems.

NSGA II achieved the best convergence and most diverse solutions. Many researchers in

various disciplines have employed NSGA II, and previous investigations on water distribution

networks in the literature have demonstrated that it is practical and efficient. It was thus

adopted here.

The population size, genetic operators, encoding and other factors influence the performance

of genetic algorithms (McClymont et al. 2015) and there is no doubt that the size of the solution

space has the greatest influence. Thus, it is advantageous to reduce the size of the solution space to

improve the computational efficiency and solution quality (Maier et al. 2014). However, from the

perspective of the development of rigorous, practical and computationally efficient algorithms, it

has received very little attention, perhaps because it is complex and challenging. Furthermore, the

approaches proposed so far for water distribution networks have involved cost minimization only.

Vairavamoorthy and Ali (2005) demonstrated the effectiveness of reducing the size of the

solution space by limiting the number of candidate diameters for each pipe. The pipe index

vector that was used to quantify the relative importance of each pipe was calculated repeatedly

during the optimization. Calculation of the pipe index vector imposed a very high computa-

tional burden, as it required hydraulic simulations of the water distribution network and the

solution of a complex system of linear equations.

Kadu et al. (2008) reduced the number of candidate diameters for each pipe based on the

concept of the critical path in a single-source network. The limitations are such that it has not

yet been applied to practical problems such as rehabilitation and networks with pumps, tanks,

multiple operating conditions, and time varying demands.

Haghighi et al. (2011) reduced the solution space indirectly by reducing the number of

decision variables through problem transformation. The transformation was achieved by
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hybridizing the genetic algorithm (GA) with integer linear programming. Thus, a looped

network was transformed into a branched network, in order to define a path from a source

to each demand node. The GA optimized the loop-completing links, following optimization of

the rest of the pipes using integer linear programming. The integer linear programming and

GA sequence was applied iteratively.

Zheng et al. (2011) applied extensive problem simplification and pre-processing using

graph theory and non-linear programming to find near-optimal solutions that were then used to

define the reduced solution space. On the other hand, rather than reduce the solution space

explicitly, Kang and Lansey (2012) used heuristic procedures to generate initial solutions for

the evolutionary algorithm.

A new methodology that reduces the solution space during the design optimization of water

distribution systems was developed. The reason for reducing the solution space is to increase

the computational efficiency. In the algorithm proposed, the reduced solution space is not set a

priori, and all the decision variables are optimized at once. The methodology developed is

essentially an application of the most likely flow distribution that derives from the maximum

entropy formalism (Jaynes 1957). Resilience considerations (Dunn and Wilkinson 2017) were

addressed by maximizing the flow entropy at the same time. In other words, the algorithm

carries out solution space reduction and entropy maximization simultaneously.

2 Network Flow Entropy

The primary design objectives for a water distribution network are cost minimization and

adequate water supply and pressure at the demand nodes. In practice, it is likely that some

network elements will be unavailable due to pipe breakage, pump failure, repairs and mainte-

nance, etc. Therefore, some spare capacity needs to be included to enable the network to perform

reasonably satisfactorily under both normal and abnormal operating conditions. Accordingly,

other criteria besides the costs are often considered also (Tanyimboh and Templeman 1994).

The importance of considering failure tolerance and redundancy in addition to the hydraulic

reliability has been emphasized previously in the literature (Kalungi and Tanyimboh 2003;

Gheisi and Naser 2015). Redundancy comprises any surplus capacity in the components (i.e.

pipes, pumps, service reservoirs, etc.) and/or multiple independent supply paths from the

supply nodes to the demand nodes (Awumah et al. 1991; Herrera et al. 2016; Praks et al. 2015;

Saleh and Tanyimboh 2014; Yazdani et al. 2011). Failure tolerance is a measure of the extent to

which a water distribution network can satisfy the nodal demands at adequate pressure with

one or more components unavailable (Tanyimboh and Templeman 1998).

However, due to the high computational burden associated with the evaluation of accurate

measures of reliability, researchers frequently employ alternative measures (Wu et al. 2013).

Probably the best definition of the hydraulic capacity reliability of a water distribution system,

as the expectation of the ratio of the flow delivered at adequate pressure to the flow required,

under normal and abnormal operating conditions, was proposed by Tanyimboh and

Templeman (1998).

Various performance surrogates have been proposed in the last two decades. As in the wider

context of surrogate modelling, where surrogates represent the response surface of simulation

models (Wang et al. 2014), they have the advantages that they are easy to calculate and

incorporate in optimization procedures. Awumah et al. (1990) used Shannon’s informational

entropy (Shannon 1948) to design and assess the performance of water distribution networks.
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Tanyimboh and Templeman (1993a) provided the definitive formulation of the flow

entropy based on the conditional entropy concept (Khinchin 1953, 1957). A discussion

of the relative merits of the flow entropy functions proposed by Awumah et al. (1990)

and Tanyimboh and Templeman (1993a) is available in Tanyimboh (1993). Variants of

the flow entropy include Tsallis entropy (Singh and Oh 2015) and diameter-sensitive

flow entropy (Liu et al. 2014).

The relationship between flow entropy and resilience (Dunn and Wilkinson 2017) as

characterised by reliability and failure tolerance (Praks et al. 2015) was shown previously

to be strong (Czajkowska and Tanyimboh 2013; Saleh and Tanyimboh 2016; Tanyimboh

et al. 2016). Other reliability and redundancy surrogates in the literature include various

resilience indices (Jayaram and Srinivasan 2008; Liu et al. 2016; Prasad and Park 2004;

Todini 2000). Recent comparative assessments of the surrogates include Atkinson et al.

(2014), Gheisi and Naser (2015), Liu et al. (2014, 2016) and Tanyimboh et al. (2016).

Gheisi and Naser (2015) and Tanyimboh et al. (2016) observed that flow entropy had a

significantly stronger positive correlation with reliability and failure tolerance than the

available alternatives.

3 Water Distribution Network Design Optimization Problem

In general, optimization problems involve constraints while genetic algorithms often do not

address constraints directly. The most common constraint-handling strategy (Michalewicz

1995) is to penalize infeasible solutions to reduce their fitness. However, in general the

formulation of suitably responsive penalty functions is very challenging (Chang et al. 2010;

Deb and Datta 2013). Moreover, searching through the feasible and infeasible regions of the

solution space improves an algorithm’s efficiency and identifies better solutions than searching

through the feasible regions only (Glover and Greenberg 1989).

Deb (2000) introduced the tournament selection operator whereby feasible solutions are

favoured over infeasible solutions. When comparing infeasible solutions, the solutions with the

smallest constraint violations are preferred. If the solutions are feasible, the fittest solutions

have preference. A major drawback in this approach is that it impedes the propagation of

efficient infeasible solutions, which play an important role in the evolutionary processes that

drive the optimization (Saleh and Tanyimboh 2014; Siew et al. 2014, 2016). A penalty-free

approach was adopted in this investigation due to these considerations. However, other

constraint handling strategies are available (Chootinan and Chen 2006; Oyama et al. 2007;

Woldesenbet et al. 2009).

The objectives considered in the formulation of the optimization problem were: (a)

minimization of the network’s initial construction cost; and (b) maximization of the flow

entropy, based on the maximum entropy formalism (Jaynes 1957). The constraints were the

system of equations that govern the flow, and the nodal minimum residual pressure constraints.

EPANET 2, a hydraulic solver (Rossman 2000), was used to analyse the candidate solutions

and thus the conservation of mass and energy constraints were satisfied.

On the other hand, the nodal minimum residual pressure constraints were addressed by

introducing an infeasibility objective that was minimized. Thus, the function f2 in Eq. 2

identifies the largest shortfall in the required nodal residual pressure in the network. As the

value of f2 is zero for feasible solutions, minimizing the infeasibility aims to achieve feasible

solutions by reducing the infeasibility to zero.
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The decision variables of the optimization problem are the pipe diameters; i.e. the optimi-

zation seeks the optimal vector for the pipe diameters. The optimization problem may be

summarised briefly as follows.

Minimize the initial construction cost : f 1 ¼ ∑
np

i¼1

Ci di; lið Þ ð1Þ

where Ci (di, li) is the cost of pipe i with diameter di and length li, and np represents the number

of pipes in the network.

Minimize the infeasibility : f 2 ¼ Max Max 0; H
req
i −H ið Þ½ �;∀if g ð2Þ

where the head at node i, Hi, was obtained from the hydraulic simulation model (EPANET 2)

and H
req
i is the head at node i above which the demand is satisfied in full.

Maximize the flow entropy : f 3 ¼ S ð3Þ

where S is the flow entropy (Tanyimboh and Templeman 1993a).

Subject to : di∈D; ∀i ð4Þ

where the set D comprises the available discrete pipe diameter options.

Shannon’s statistical entropy function quantifies the amount of uncertainty that a probability

distribution represents (Shannon 1948). The flow entropy function in Eq. 5 (Tanyimboh and

Templeman 1993a, b, c, d) is an extension that measures the relative uniformity of the pipe

flow rates in a water distribution network.
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where S is the entropy; K is an arbitrary positive constant that is often taken as 1.0; T is the total

supply; Tj is the total flow reaching node j; Qi is the inflow at a supply node; Qj is the demand

at a demand node; qij is the flow rate in pipe ij; I is the number of supply nodes; J is the number

of demand nodes including junctions; and Nj is the set of pipe flows from node j.

4 Procedure for Reducing The Solution Space

Among the nondominated solutions in each generation, a feasible solution with a specified

value of entropy may be selected as the reference solution for the purposes of defining the

reduced solution space. In order to determine an appropriate subset of candidate pipe diameters

to allocate to a particular pipe, the diameter of the pipe in question in the reference solution is

selected along with four additional diameters to provide five candidate diameters in total. The

four additional diameters included are the nearest two diameters that are smaller than the

reference diameter and the nearest two diameters that are larger than the reference diameter.

For the purposes of the proposed algorithm, the reference diameter of a pipe is the current

diameter in the reference solution. The reference solution is the solution whose diameters

inform the limits of the active solution space. The active solution space is dynamic, and is the

reduced solution space in the current generation. The reduced solution space is the portion of

the solution space that remains after excluding the pipe diameter options or segments of any
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continuous decision variables that should not be considered or explored by the optimization

algorithm.

Furthermore, if the diameter in the reference solution is the largest or smallest available diameter,

it is allocated three times. Similarly, if the reference diameter is the next largest or next smallest

diameter, the largest or smallest diameter is allocated two times. This is necessary to avoid bias; all

the pipes should have an equal number of sizing options. This process of re-defining the active

solution space is repeated in each subsequent generation until the end of the optimization process.

The smallest number of pipe diameter options that permits the diameters to increase or

decrease is three. However, it may yield suboptimal solutions by being too restrictive as each

pipe diameter may change by at most one pipe size only. Five pipe diameter options were

adopted as a compromise that yields satisfactory results (Kadu et al. 2008; Siew et al. 2014;

Zheng et al. 2011).

The source code of the genetic algorithm (NSGA II) (Deb et al. 2002) was modified and

combined with the hydraulic solver (EPANET 2) (Rossman 2000) and a subroutine the authors

developed to calculate the flow entropy value for any given network configuration. The

hydraulic solver used was demand-driven (see e.g. Siew and Tanyimboh 2011) and so the

entropy values of the infeasible solutions could be unrealistic and/or misleading. The reduction

in the solution space was initiated only after achieving feasible solutions. When feasible

solutions became available, the solution space was reduced to promote exploitation by

intensifying the search around the feasibility boundaries. On the other hand, exploration and

diversity were sustained by continuing the search for new solutions with higher entropy values.

4.1 Details of the Methodology

Previous studies have shown that the slope of the graph of entropy versus cost often

approaches zero after around 99% of the maximum entropy value (Czajkowska 2016). Hence,

99% of the maximum entropy value may be considered the approximate point at which the

entropy stabilizes. Moreover, previous studies in the literature have shown that solutions

having different configurations but identical entropy values generally have similar perfor-

mance characteristics including resilience (Czajkowska and Tanyimboh 2013; Tanyimboh and

Setiadi 2008; Tanyimboh et al. 2011; Tanyimboh and Sheahan 2002). Consequently, taking the

solution with the highest entropy value achieved in each generation as the reference solution

may yield solutions with diameters that are larger and more expensive than necessary, if less

expensive solutions with similar resilience properties are available.

Accordingly, the entropy value for the reference solution may be set as follows.

S ¼ 1−εð ÞS*; 0 ≤ ε ≤ δ; 0 ≤ δ < 1:0 ð6Þ

where S* is the global maximum entropy value; ε a tolerance parameter that is used to adjust

the properties of the Pareto-optimal front; and δ is an upper limit for ε.

The value of S* is unknown at the start of the optimization. However, it is evolved by

assuming that it is the largest value achieved in the current generation. By definition, the

combination of entropy maximization and cost minimization provides a diverse population of

solutions with enhanced resilience properties. Consequently, a small value of δ, say about 0.02,

should suffice. The new algorithm developed (SSRA) (self-adaptive solution-space reduction

algorithm) has three main components as summarised briefly below. It is worth noting that

each component is independent and may be applied on its own. The effectiveness of the
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algorithm was assessed by comparing the results with the baseline conventional algorithm with

no reduction in the solution space.

4.1.1 Part 1: Solution Space Reduction with ε of zero

The algorithm starts with the full solution space. In the first generation following the achieve-

ment of feasible solutions, the number of pipe diameter options for each pipe is reduced to five

and the solution with the maximum entropy value (i.e. ε = ε0 ≡ 0 in Eq. 6) is used to define the

active solution space for the next generation. Then, the active solution space is re-defined for

each subsequent generation until the end of the optimization. This is similar to the conventional

approach, except for the solution space reduction. With the maximum entropy solution as the

reference solution, this favours the high-entropy and high-cost end of the Pareto-optimal front.

4.1.2 Part 2: Solution Space Reduction with ε of 0.02

With ε = ε2 ≡ 0.02 in Eq. 6, the solution closest to 98% of the highest entropy value achieved

so far in the optimization is selected as the reference solution that is used to define the active

solution space, starting from the first generation following the achievement of feasible

solutions. This favours the low-entropy and low-cost end of the Pareto-optimal front.

4.1.3 Part 3: Solution Space Reduction with ε of 0.01

With ε = ε1 ≡ 0.01 in Eq. 6, the solution closest to 99% of the highest entropy value achieved

so far in the optimization is selected as the reference solution that is used to define the active

solution space, starting from the first generation following the achievement of feasible

solutions. This favours the inner portion of the Pareto-optimal front.

4.2 Conventional Solution Approach

The conventional solution approach employs the full solution space with no restriction in the

entropy value. In other words, ε is zero and the entire solution space is active.

5 Results and Discussion

To illustrate the methodology and potential of the proposed approach the network shown in

Fig. 1 (Kadu et al. 2008) was investigated. Its solution space is substantial and Kadu et al.

(2008) used it previously to study the benefits of reducing the solution space. Other re-

searchers, for example, Barlow and Tanyimboh (2014), Haghighi et al. (2011) and Siew

et al. (2014) have provided solutions for this network also. However, previous studies

addressed a single-objective cost minimization problem that did not include reliability or

resilience considerations. Thus, the results are not directly comparable.

5.1 Network Description and Problem Specifications

The skeletonised network shown in Fig. 1 comprised 26 nodes, 34 pipes and 9 loops. There

were two reservoirs at nodes 1 and 2 with constant heads of 100 and 95 m, respectively. The
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Hazen-Williams roughness coefficient was 130 for all the pipes. The nodal demands in m3/min

are shown in Fig. 1. The pipe lengths and residual heads above which the nodal demands

would be satisfied in full are in Table 1. There were 14 available pipe diameter options as

shown in Table 2.

The objectives were to minimize the initial construction cost and maximize the flow

entropy. The minimum node pressure constraints were addressed by introducing an infeasibil-

ity objective that was minimized. The decision variables were the pipe diameters. The solution

space comprised 1434 or 9.30 × 1038 feasible and infeasible solutions, based on 14 pipe

diameter options and 34 pipes.

5.2 Details of the Implementation of the Genetic Algorithm

For the full solution space with 14 pipe diameter options, a four-bit binary substring provided

24 = 16 codes for the pipe diameters. There were thus two redundant substrings (Herrera et al.

1998). Redundant substrings that do not correspond to any of the available pipe diameter

options arise if the number of decision variables is not a power of 2. To match the number of

codes and achieve a balanced allocation of the redundant codes, both the 5th (350 mm) and

10th (700 mm) diameter options were doubled. In an ordinal sense, a balanced allocation of the

Fig. 1 Network topology. The rectangles represent supply nodes (reservoirs) while circles represent demand

nodes. Nodal demands (m3/min), reservoir water levels (m) and pipe identifiers are as indicated
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redundant codes, in terms of the sequence of pipe diameter options, aims to minimize the

effects of representation bias (Herrera et al. 1998) that arises due to the over-representation of

two codes out of 14. Czajkowska (2016) has shown that a balanced allocation of the redundant

codes yields better results in terms of a more even distribution of the solutions on the Pareto-

optimal front achieved.

On the other hand, when the number of pipe diameter options reduced to five, a three-bit

binary substring provided 23 = 8 codes for the pipe diameters. Similarly, to match the number

of codes and achieve a balanced allocation of the three redundant codes, each of the 1st, 3rd

and 5th pipe diameter options were doubled. Alternative techniques for handling redundant

binary codes were discussed by Saleh and Tanyimboh (2014) who proposed an innovative

approach based on natural selection.

A bitwise mutation operator was used to change the bits from zero to one or vice versa with

a mutation probability of 1/ng = 1/136 = 0.007, where ng = 136 was the chromosome length. A

single-point crossover operator was used to produce two offspring from two parents with a

crossover probability of 1.0.

There were four solution scenarios for the optimization, i.e. the reduced solution spaces with

the three different ε values of zero, 0.01 and 0.02, and the full solution space with ε of zero. The

termination criterion for the GAwas 100,000 function evaluations, i.e. 1000 generations based

Table 1 Pipe lengths and minimum nodal heads for satisfactory water supply and pressure

Pipe lengths Minimum nodal heads for full supply

Pipes Lengths (m) Pipes Lengths (m) Nodes Heads (m) Nodes Heads (m)

1 300 18 650 1 100 14 82

2 820 19 760 2 95 15 85

3 940 20 1100 3 85 16 82

4 730 21 660 4 85 17 82

5 1620 22 1170 5 85 18 85

6 600 23 980 6 85 19 82

7 800 24 670 7 82 20 82

8 1400 25 1080 8 82 21 82

9 1175 26 750 9 85 22 80

10 750 27 900 10 85 23 82

11 210 28 650 11 85 24 80

12 700 29 1540 12 85 25 80

13 310 30 730 13 82 26 80

14 500 31 1170

15 1960 32 1650

16 900 33 1320

17 850 34 3250

Table 2 Available pipe diameter options and unit costs

Diameter options

(mm)

Unit costs

(rupees)

Diameter options

(mm)

Unit costs

(rupees)

Diameter options

(mm)

Unit costs

(rupees)

150 1115 400 4255 750 11,874

200 1600 450 5172 800 13,261

250 2154 500 6092 900 16,151

300 2780 600 8189 1000 19,395

350 3475 700 10,670
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on a population of 100. The members of the initial populations were created randomly, and each

optimization scenario had 50 independent optimization runs. The average CPU time on a

personal computer (Intel Core 2 Duo@ 3.5 GHz and 3 GB RAM) for an optimization run with

100,000 function evaluations was almost the same for all the scenarios. It is worth noting that

only 50 independent initial populations were created, and each initial population was used in the

four solution scenarios. The reason was to simplify subsequent comparisons byminimizing any

discrepancies due to differences in the initial populations.

After excluding infeasible solutions at the end of the optimization, the nondominated

feasible solutions achieved were combined and sorted based on Pareto-dominance to provide

the best Pareto-optimal front (Fig. 2c). Similarly, Pareto-optimal fronts were obtained from the

respective sets of 50 runs for the full and reduced solutions spaces (Fig. 2a). In addition, the

nondominated solutions from the three reduced solution spaces were combined and sorted

based on Pareto-dominance (Fig. 2b). The results are summarised in Fig. 2 and Table 3, with

additional details in Figs. 3 and 4, and the supplementary data. In Figs. 2, 3 and 4, the

abbreviations FSS and MERSS represent full solution space and maximum entropy reduced

solution space, respectively.

5.3 Results and Discussion

Recalling that the independent initial populations used were the same in the four solution

scenarios, the individual Pareto-optimal fronts in the supplementary data reveal that the method

with solution space reduction achieved superior results, compared to the full solution space.

Figure 2a shows that the Pareto-optimal fronts from the reduced solution spaces tended to

dominate the full solution space. What is more, SSRA (self-adaptive solution-space reduction
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algorithm) achieved additional solutions with lower entropy values between 3.1 and 3.3 that

were not found by FSSA (full solution space algorithm). FSSA on the other hand produced the

solutions with the highest entropy values. The highest entropy values achieved by the full and

reduced solution spaces were 4.370 and 4.329, respectively. The difference is 0.041 or 0.94%.

The shortfall could be because SSRA had only five pipe diameter options compared to 14 for

Table 3 Computational efficiency based on 50 independent optimization runs

Solution scenario Minimum Mean Median Maximum

CPU time to complete 100,000 function evaluations (minutes)

FSS (ε = 0) 3.50 3.62 3.60 3.78

RSS (ε = 0) 3.50 3.65 3.67 3.78

RSS (ε = 0.01) 5.57 3.67 3.68 3.82

RSS (ε = 0.02) 3.53 3.65 3.63 3.78

Number of feasible solutions per optimization run (×103)

FSS (ε = 0) 2.336 3.985 3.984 5.750

RSS (ε = 0) 6.990 11.831 11.362 18.389

RSS (ε = 0.01) 4.737 10.363 10.172 16.831

RSS (ε = 0.02) 4.939 10.183 9.571 16.597
aNumber of function evaluations to achieve convergence of entropy (×103)

FSS (ε = 0) 4.0 37.0 30.0 100.0b

RSS (ε = 0) 4.0 10.4 4.0 100.0b

RSS (ε = 0.01) 4.0 8.6 4.0 76.0

RSS (ε = 0.02) 4.0 5.8 4.0 28.0

aThis refers to the point after which improvements in entropy were deemed insignificant
bThis corresponds to the maximum number of function evaluations allowed, i.e. 100,000
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FSSA. However, the decision maker would likely not choose the solutions with the highest

entropies because their costs are relatively uncompetitive.

It can be seen also that FSSA underperformed at the lower end of the Pareto-optimal front

while SSRAwith ε of 0.02 under-performed at the upper end. On the other hand, SSRAwith ε

of 0.01 was consistently optimal or near optimal and the most competitive. Overall, there were

147 nondominated solutions in total. Figure 2c shows the final Pareto-optimal front based on

all the solutions achieved from all the optimization runs. FSSA contributed 23 solutions

(16%); SSRAwith ε of zero contributed 47 solutions (32%); SSRAwith ε of 0.01 contributed

62 solutions (42%); and SSRA with ε of 0.02 contributed 15 solutions (10%).

Figure 3 shows the progress of the optimization in terms of cost. The cost decreased and

stabilised rapidly in the reduced solution spaces. On the other hand, in the full solution space,

the cost decreased rapidly initially, and then it increased gradually until the end. This is due to

the entropy maximization with more pipe diameter options. Figure 3 shows that, compared to

the full solution space, significantly lower costs were achieved in the reduced solution spaces.

Figure 4 shows the progress of the flow entropy based on the feasible solutions only. In the

full solution space, after a rapid increase at the start, the entropy continued to increase slowly

until the last generation, as the solution space is substantial. Convergence was considerably

faster in the reduced solution spaces, where the entropy increased rapidly in the early

generations. The maximum entropy values achieved in the full and reduced solution spaces

were 4.370 and 4.329, respectively. The difference is only 0.041 or 0.94%.

Figure 2d demonstrates the progress in terms of the deficit in the residual head at the critical

node. The critical node is the node that has the largest deficit in the residual head. It varies from

one solution to the next and depends on the operating and loading conditions. In the full

solution space, as the cost minimization progressed, the number of feasible solutions decreased
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initially after which a gradual increase followed. In the reduced solution spaces, the average

deficit decreased and then remained stable until the end. The average initial deficit was

251.13 m; recall that each initial population was used in the four solution scenarios.

The lowest average deficits achieved by SSRAwere 58.59 m for ε of 0.01, 65.64 m for ε of

0.02 and 73.38 m for ε of zero. It is worth observing that the average deficit could not be

reduced to zero; a fundamental beneficial property of the methodology is that the optimization

algorithm retains nondominated infeasible solutions until the end. Compared to FSSAwith an

average deficit of 4161.93 m at the end of the optimization, SSRA deficits were relatively

small (less than 2%). These results contribute to the evidence that SSRA intensifies the search

around the feasibility boundaries.

Table 3 shows that that SSRA produced significantly more feasible solutions than FSSA.

On average, SSRA produced approximately three times more feasible solutions per GA run

than FSSA. This demonstrates clearly the efficiency of SSRA. Table 3 also presents the

convergence and consistency statistics based on 50 independent optimization runs. There

was almost no difference between the CPU times based on the entire optimization runs with

100,000 function evaluations. It is therefore logical to infer that the SSRA modifications did

not impose a significant computational burden. In fact, the SSRA convergence was sufficiently

fast to complete the three SSRA solution scenarios with ε values of zero, 0.01 and 0.02 in less

time than one FSSA solution.

It was observed also that, in general, an entropy increase of less than 3% between

successive generations implied the entropy had stabilised in the network considered. Table 3

presents the number of function evaluations needed to achieve convergence. The results show

that, compared to FSSA, the SSRA convergence was extremely fast. For example, the median

and minimum values for SSRAwere identical. The rapid convergence observed was the direct

result of reducing the number of candidate pipe diameters once the algorithm achieved feasible

solutions. In the present example, after the reduction, the active solution space as a fraction of

the full solution space was (5/14)34 or 6.30 × 10−16. This is the same as a ratio of 1:1.60 × 1015.

6 Conclusions

A new reliability-based method that reduces the solution space in the design optimization of

water distribution networks was developed. The formulation recognises the relative impor-

tance of every path through network, based on a fundamental property of flow entropy

(Tanyimboh and Templeman 1993a).

The algorithm is generic, self-adaptive and prior initialisation or setting of the reduced

solution space is not required. The algorithm has two phases. After achieving feasible solutions

in the first phase that prioritises exploration, the second phase that prioritises exploitation

intensifies the search around the active constraint boundaries. At the same time, in the second

phase, the resilience of the individual solutions and diversity among the population of

solutions are preserved due to the continuation of the entropy maximization.

The solutions that the proposed algorithm obtained were clearly superior to those from the

full solution space in terms of cost and flow entropy. Furthermore, convergence in the reduced

solution space was significantly faster. The new method also provided more solutions than the

full solution space, and additional low-cost and low-entropy solutions were achieved in the

reduced solution space that were not found in the full solution space. In other words, the new

procedure extended the Pareto-optimal front at the lower end. The results demonstrated that,

Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective...



depending on the circumstances of the investigation at hand, the algorithm enabled the top,

middle or bottom of the Pareto-optimal front to be prioritised as required by varying the value

of ε, an entropy-based tolerance or relaxation parameter.

More verification would be worth considering, in addition to other comparative analyses.

The algorithm could be improved potentially by replacing the demand-driven hydraulic

simulation model with pressure-driven simulation. Networks that are more complex may be

worth considering also.
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