108 research outputs found

    Electromagnetic properties of strange baryons in a relativistic quark model

    Get PDF
    We present some of our results for the electromagnetic properties of excited ÎŁ hyperons, computed within the framework of the Bonn constituent-quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model are fitted against the best-known baryon masses. Accordingly, the results for the form factors and helicity amplitudes are genuine predictions. We compare with the scarce experimental data available and discuss the processes in which ÎŁ *'s may play an important role

    Electromagnetic KY production from the proton in a Regge-plus-resonance approach

    Get PDF
    A Regge-plus-resonance (RPR) description of the p(\gamma,K)Y and p(e,e'K)Y processes (Y = \Lambda, \Sigma^{0,+}) is presented. The proposed reaction amplitude consists of Regge-trajectory exchanges in the t channel, supplemented with a limited selection of s-channel resonance diagrams. The RPR framework contains a considerably smaller number of free parameters than a typical effective-Lagrangian model. Nevertheless, it provides an acceptable overall description of the photo- and electroproduction observables over an extensive photon energy range. It is shown that the electroproduction response functions and polarization observables are particularly useful for fine-tuning both the background and resonance parameters.Comment: 4 pages, 3 figures, Proceedings for IX International Conference on Hypernuclear and Strange Particle Physics (HYP2006), October 10-14 2006, Main

    Bridging Two Ways of Describing Final-State Interactions in A(e,e'p) Reactions

    Get PDF
    We outline a relativistic and unfactorized framework to treat the final-state interactions in quasi-elastic A(e,e'p) reactions for four-momentum transfers Q2≳0.3^{2} \gtrsim 0.3 (GeV/c)2^{2}. The model, which relies on the eikonal approximation, can be used in combination with optical potentials, as well as with the Glauber multiple-scattering method. We argue that such a model can bridge the gap between a typical ``low'' and ``high-energy'' description of final-state interactions, in a reasonably smooth fashion. This argument is made on the basis of calculated structure functions, polarization observables and nuclear transparencies for the target nuclei 12^{12}C and 16^{16}O.Comment: revised versio

    Electromagnetic form factors of hyperons in a relativistic quark model

    Get PDF
    The relativistically covariant constituent quark model developed by the Bonn group is used to compute the EM form factors of strange baryons. We present form-factor results for the ground-state and some excited hyperons. The computed magnetic moments agree well with the experimental values and the magnetic form factors follow a dipole Q2Q^2 dependence.Comment: 4 pages, 1 figure, Proceedings for NSTAR '04 conference in Grenoble, France, March 24-27, 2004 (World Scientific

    Probing the infrared quark mass from highly excited baryons

    Get PDF
    We argue that three-quark excited states naturally group into quartets, split into two parity doublets, and that the mass splittings between these parity partners decrease higher up in the baryon spectrum. This decreasing mass difference can be used to probe the running quark mass in the mid-infrared power-law regime. A measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy. We test this concept with the first computation of excited high-j baryon masses in a chirally invariant quark model.Comment: 4 pages, 4 figures. submitted to Phys Rev Letter

    Using highly excited baryons to catch the quark mass

    Get PDF
    Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy and see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited baryons in a chiral-invariant quark model.Comment: 6 pages, 9 figures, To appear in the proceedings of the 19th International IUPAP Conference on Few-Body Problems in Physics; added acknowledgment, hyphenized author nam

    Helicity amplitudes and electromagnetic decays of strange baryon resonances

    Full text link
    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y*, computed within the framework of the Bonn constituent-quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model are fitted against the best known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q^2 than to a real photon. Other Y*'s, such as the S_{01}(1670) Lambda resonance or the S_{11}(1620) Sigma resonance, have large electromagnetic decay widths and couple very strongly to real photons. The negatively-charged and neutral members of a Sigma* triplet may couple only moderately to the Sigma(1193), while the positively-charged member of the same Sigma* triplet displays a relatively large coupling to the Sigma^+(1193) state. This illustrates the necessity of investigating all isospin channels in order to obtain a complete picture of the hyperon spectrum.Comment: 4 pages, 1 figure, 1 table, Proceedings of the Conference "International Workshop on the Physics of Excited Baryons NSTAR 05", Tallahassee, Florida (USA), Oct. 2005, contributed tal

    Regge-model predictions for K+Sigma photoproduction from the nucleon

    Get PDF
    We present Regge-model predictions for the p(gamma,K+)Sigma0 and n(gamma,K+)Sigma- differential cross sections and photon-beam asymmetries in the resonance region. The reaction amplitude encompasses the exchange of K+(494) and K*+(892) Regge-trajectories, introducing a mere three free parameters. These are fitted to the available p(gamma,K+)Sigma0 data beyond the resonance region. The n(gamma,K+)Sigma- amplitude is obtained from the p(gamma,K+)Sigma0 one through SU(2) isospin symmetry considerations.Comment: 4 pages, 2 figures; Proceedings Tenth Conference on the Intersections of Particle and Nuclear Physics, San Diego, 200
    • …
    corecore